\### The `GcRuntime` and `GcCompiler` Traits
This commit factors out the details of the garbage collector away from the rest
of the runtime and the compiler. It does this by introducing two new traits,
very similar to a subset of [those proposed in the Wasm GC RFC], although not
all equivalent functionality has been added yet because Wasmtime doesn't
support, for example, GC structs yet:
[those proposed in the Wasm GC RFC]: https://github.com/bytecodealliance/rfcs/blob/main/accepted/wasm-gc.md#defining-the-pluggable-gc-interface
1. The `GcRuntime` trait: This trait defines how to create new GC heaps, run
collections within them, and execute the various GC barriers the collector
requires.
Rather than monomorphize all of Wasmtime on this trait, we use it
as a dynamic trait object. This does imply some virtual call overhead and
missing some inlining (and resulting post-inlining) optimization
opportunities. However, it is *much* less disruptive to the existing embedder
API, results in a cleaner embedder API anyways, and we don't believe that VM
runtime/embedder code is on the hot path for working with the GC at this time
anyways (that would be the actual Wasm code, which has inlined GC barriers
and direct calls and all of that). In the future, once we have optimized
enough of the GC that such code is ever hot, we have options we can
investigate at that time to avoid these dynamic virtual calls, like only
enabling one single collector at build time and then creating a static type
alias like `type TheOneGcImpl = ...;` based on the compile time
configuration, and using this type alias in the runtime rather than a dynamic
trait object.
The `GcRuntime` trait additionally defines a method to reset a GC heap, for
use by the pooling allocator. This allows reuse of GC heaps across different
stores. This integration is very rudimentary at the moment, and is missing
all kinds of configuration knobs that we should have before deploying Wasm GC
in production. This commit is large enough as it is already! Ideally, in the
future, I'd like to make it so that GC heaps receive their memory region,
rather than allocate/reserve it themselves, and let each slot in the pooling
allocator's memory pool be *either* a linear memory or a GC heap. This would
unask various capacity planning questions such as "what percent of memory
capacity should we dedicate to linear memories vs GC heaps?". It also seems
like basically all the same configuration knobs we have for linear memories
apply equally to GC heaps (see also the "Indexed Heaps" section below).
2. The `GcCompiler` trait: This trait defines how to emit CLIF that implements
GC barriers for various operations on GC-managed references. The Rust code
calls into this trait dynamically via a trait object, but since it is
customizing the CLIF that is generated for Wasm code, the Wasm code itself is
not making dynamic, indirect calls for GC barriers. The `GcCompiler`
implementation can inline the parts of GC barrier that it believes should be
inline, and leave out-of-line calls to rare slow paths.
All that said, there is still only a single implementation of each of these
traits: the existing deferred reference-counting (DRC) collector. So there is a
bunch of code motion in this commit as the DRC collector was further isolated
from the rest of the runtime and moved to its own submodule. That said, this was
not *purely* code motion (see "Indexed Heaps" below) so it is worth not simply
skipping over the DRC collector's code in review.
\### Indexed Heaps
This commit does bake in a couple assumptions that must be shared across all
collector implementations, such as a shared `VMGcHeader` that all objects
allocated within a GC heap must begin with, but the most notable and
far-reaching of these assumptions is that all collectors will use "indexed
heaps".
What we are calling indexed heaps are basically the three following invariants:
1. All GC heaps will be a single contiguous region of memory, and all GC objects
will be allocated within this region of memory. The collector may ask the
system allocator for additional memory, e.g. to maintain its free lists, but
GC objects themselves will never be allocated via `malloc`.
2. A pointer to a GC-managed object (i.e. a `VMGcRef`) is a 32-bit offset into
the GC heap's contiguous region of memory. We never hold raw pointers to GC
objects (although, of course, we have to compute them and use them
temporarily when actually accessing objects). This means that deref'ing GC
pointers is equivalent to deref'ing linear memory pointers: we need to add a
base and we also check that the GC pointer/index is within the bounds of the
GC heap. Furthermore, compressing 64-bit pointers into 32 bits is a fairly
common technique among high-performance GC
implementations[^compressed-oops][^v8-ptr-compression] so we are in good
company.
3. Anything stored inside the GC heap is untrusted. Even each GC reference that
is an element of an `(array (ref any))` is untrusted, and bounds checked on
access. This means that, for example, we do not store the raw pointer to an
`externref`'s host object inside the GC heap. Instead an `externref` now
stores an ID that can be used to index into a side table in the store that
holds the actual `Box<dyn Any>` host object, and accessing that side table is
always checked.
[^compressed-oops]: See ["Compressed OOPs" in
OpenJDK.](https://wiki.openjdk.org/display/HotSpot/CompressedOops)
[^v8-ptr-compression]: See [V8's pointer
compression](https://v8.dev/blog/pointer-compression).
The good news with regards to all the bounds checking that this scheme implies
is that we can use all the same virtual memory tricks that linear memories use
to omit explicit bounds checks. Additionally, (2) means that the sizes of GC
objects is that much smaller (and therefore that much more cache friendly)
because they are only holding onto 32-bit, rather than 64-bit, references to
other GC objects. (We can, in the future, support GC heaps up to 16GiB in size
without losing 32-bit GC pointers by taking advantage of `VMGcHeader` alignment
and storing aligned indices rather than byte indices, while still leaving the
bottom bit available for tagging as an `i31ref` discriminant. Should we ever
need to support even larger GC heap capacities, we could go to full 64-bit
references, but we would need explicit bounds checks.)
The biggest benefit of indexed heaps is that, because we are (explicitly or
implicitly) bounds checking GC heap accesses, and because we are not otherwise
trusting any data from inside the GC heap, we greatly reduce how badly things
can go wrong in the face of collector bugs and GC heap corruption. We are
essentially sandboxing the GC heap region, the same way that linear memory is a
sandbox. GC bugs could lead to the guest program accessing the wrong GC object,
or getting garbage data from within the GC heap. But only garbage data from
within the GC heap, never outside it. The worse that could happen would be if we
decided not to zero out GC heaps between reuse across stores (which is a valid
trade off to make, since zeroing a GC heap is a defense-in-depth technique
similar to zeroing a Wasm stack and not semantically visible in the absence of
GC bugs) and then a GC bug would allow the current Wasm guest to read old GC
data from the old Wasm guest that previously used this GC heap. But again, it
could never access host data.
Taken altogether, this allows for collector implementations that are nearly free
from `unsafe` code, and unsafety can otherwise be targeted and limited in scope,
such as interactions with JIT code. Most importantly, we do not have to maintain
critical invariants across the whole system -- invariants which can't be nicely
encapsulated or abstracted -- to preserve memory safety. Such holistic
invariants that refuse encapsulation are otherwise generally a huge safety
problem with GC implementations.
\### `VMGcRef` is *NOT* `Clone` or `Copy` Anymore
`VMGcRef` used to be `Clone` and `Copy`. It is not anymore. The motivation here
was to be sure that I was actually calling GC barriers at all the correct
places. I couldn't be sure before. Now, you can still explicitly copy a raw GC
reference without running GC barriers if you need to and understand why that's
okay (aka you are implementing the collector), but that is something you have to
opt into explicitly by calling `unchecked_copy`. The default now is that you
can't just copy the reference, and instead call an explicit `clone` method (not
*the* `Clone` trait, because we need to pass in the GC heap context to run the
GC barriers) and it is hard to forget to do that accidentally. This resulted in
a pretty big amount of churn, but I am wayyyyyy more confident that the correct
GC barriers are called at the correct times now than I was before.
\### `i31ref`
I started this commit by trying to add `i31ref` support. And it grew into the
whole traits interface because I found that I needed to abstract GC barriers
into helpers anyways to avoid running them for `i31ref`s, so I figured that I
might as well add the whole traits interface. In comparison, `i31ref` support is
much easier and smaller than that other part! But it was also difficult to pull
apart from this commit, sorry about that!
---------------------
Overall, I know this is a very large commit. I am super happy to have some
synchronous meetings to walk through this all, give an overview of the
architecture, answer questions directly, etc... to make review easier!
prtest:full
This crate defines various libFuzzer
fuzzing targets for Wasmtime, which can be run via cargo fuzz.
These fuzz targets just glue together pre-defined test case generators with
oracles and pass libFuzzer-provided inputs to them. The test case generators and
oracles themselves are independent from the fuzzing engine that is driving the
fuzzing process and are defined in wasmtime/crates/fuzzing.
Example
To start fuzzing run the following command, where $MY_FUZZ_TARGET is one of
the available fuzz targets:
cargo fuzz run $MY_FUZZ_TARGET
Available Fuzz Targets
At the time of writing, we have the following fuzz targets:
api_calls: stress the Wasmtime API by executing sequences of API calls; only
the subset of the API is currently supported.
compile: Attempt to compile libFuzzer's raw input bytes with Wasmtime.
compile-maybe-invalid: Attempt to compile a wasm-smith-generated Wasm module
with code sequences that may be invalid.
cranelift-fuzzgen: Generate a Cranelift function and check that it returns
the same results when compiled to the host and when using the Cranelift
interpreter; only a subset of Cranelift IR is currently supported.
cranelift-icache: Generate a Cranelift function A, applies a small mutation
to its source, yielding a function A', and checks that A compiled +
incremental compilation generates the same machine code as if A' was compiled
from scratch.
differential: Generate a Wasm module, evaluate each exported function
with random inputs, and check that Wasmtime returns the same results as a
choice of another engine: the Wasm spec interpreter (see the
wasm-spec-interpreter crate), the wasmi interpreter, V8 (through the v8
crate), or Wasmtime itself run with a different configuration.
instantiate: Generate a Wasm module and Wasmtime configuration and attempt
to compile and instantiate with them.
instantiate-many: Generate many Wasm modules and attempt to compile and
instantiate them concurrently.
spectests: Pick a random spec test and run it with a generated
configuration.
table_ops: Generate a sequence of externref table operations and run them
in a GC environment.
The canonical list of fuzz targets is the .rs files in the fuzz_targets
directory:
ls wasmtime/fuzz/fuzz_targets/
Corpora
While you can start from scratch, libFuzzer will work better if it is given a
corpus of seed inputs to kick
start the fuzzing process. We maintain a corpus for each of these fuzz targets
in a dedicated repo on
github.
You can use our corpora by cloning it and placing it at wasmtime/fuzz/corpus:
When investigating a fuzz bug (especially one found by OSS-Fuzz), use the
following steps to reproduce it locally:
Download the test case (either the "Minimized Testcase" or "Unminimized
Testcase" from OSS-Fuzz will do).
Run the test case in the correct fuzz target:
cargo +nightly fuzz run <target> <testcase>
If all goes well, the bug should reproduce and libFuzzer will dump the
failure stack trace to stdout
For more debugging information, run the command above with RUST_LOG=debug
to print the configuration and WebAssembly input used by the test case (see
uses of log_wasm in the wasmtime-fuzzing crate).
Target specific options
cranelift-fuzzgen
Fuzzgen supports passing the FUZZGEN_ALLOWED_OPS environment variable, which when available restricts the instructions that it will generate.
Running FUZZGEN_ALLOWED_OPS=ineg,ishl cargo fuzz run cranelift-fuzzgen will run fuzzgen but only generate ineg or ishl opcodes.
cranelift-icache
The icache target also uses the fuzzgen library, thus also supports the FUZZGEN_ALLOWED_OPS enviornment variable as described in the cranelift-fuzzgen section above.