You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

409 lines
15 KiB

#![no_main]
use cranelift_codegen::ir::Function;
use cranelift_codegen::ir::Signature;
use cranelift_codegen::ir::UserExternalName;
use cranelift_codegen::ir::UserFuncName;
use cranelift_codegen::Context;
use cranelift_control::ControlPlane;
use libfuzzer_sys::arbitrary;
use libfuzzer_sys::arbitrary::Arbitrary;
use libfuzzer_sys::arbitrary::Unstructured;
use libfuzzer_sys::fuzz_target;
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::fmt;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use cranelift_codegen::data_value::DataValue;
use cranelift_codegen::ir::{LibCall, TrapCode};
use cranelift_codegen::isa;
use cranelift_filetests::function_runner::{TestFileCompiler, Trampoline};
use cranelift_fuzzgen::*;
use cranelift_interpreter::environment::FuncIndex;
use cranelift_interpreter::environment::FunctionStore;
use cranelift_interpreter::interpreter::{
Interpreter, InterpreterError, InterpreterState, LibCallValues,
};
use cranelift_interpreter::step::ControlFlow;
use cranelift_interpreter::step::CraneliftTrap;
use cranelift_native::builder_with_options;
use smallvec::smallvec;
const INTERPRETER_FUEL: u64 = 4096;
/// Gather statistics about the fuzzer executions
struct Statistics {
/// Inputs that fuzzgen can build a function with
/// This is also how many compiles we executed
pub valid_inputs: AtomicU64,
/// How many times did we generate an invalid format?
pub invalid_inputs: AtomicU64,
/// Total amount of runs that we tried in the interpreter
/// One fuzzer input can have many runs
pub total_runs: AtomicU64,
/// How many runs were successful?
/// This is also how many runs were run in the backend
pub run_result_success: AtomicU64,
/// How many runs resulted in a timeout?
pub run_result_timeout: AtomicU64,
/// How many runs ended with a trap?
pub run_result_trap: HashMap<CraneliftTrap, AtomicU64>,
}
impl Statistics {
pub fn print(&self, valid_inputs: u64) {
// We get valid_inputs as a param since we already loaded it previously.
let total_runs = self.total_runs.load(Ordering::SeqCst);
let invalid_inputs = self.invalid_inputs.load(Ordering::SeqCst);
let run_result_success = self.run_result_success.load(Ordering::SeqCst);
let run_result_timeout = self.run_result_timeout.load(Ordering::SeqCst);
println!("== FuzzGen Statistics ====================");
println!("Valid Inputs: {}", valid_inputs);
println!(
"Invalid Inputs: {} ({:.1}% of Total Inputs)",
invalid_inputs,
(invalid_inputs as f64 / (valid_inputs + invalid_inputs) as f64) * 100.0
);
println!("Total Runs: {}", total_runs);
println!(
"Successful Runs: {} ({:.1}% of Total Runs)",
run_result_success,
(run_result_success as f64 / total_runs as f64) * 100.0
);
println!(
"Timed out Runs: {} ({:.1}% of Total Runs)",
run_result_timeout,
(run_result_timeout as f64 / total_runs as f64) * 100.0
);
println!("Traps:");
// Load and filter out empty trap codes.
let mut traps = self
.run_result_trap
.iter()
.map(|(trap, count)| (trap, count.load(Ordering::SeqCst)))
.filter(|(_, count)| *count != 0)
.collect::<Vec<_>>();
// Sort traps by count in a descending order
traps.sort_by_key(|(_, count)| -(*count as i64));
for (trap, count) in traps.into_iter() {
println!(
"\t{}: {} ({:.1}% of Total Runs)",
trap,
count,
(count as f64 / total_runs as f64) * 100.0
);
}
}
}
impl Default for Statistics {
fn default() -> Self {
// Pre-Register all trap codes since we can't modify this hashmap atomically.
let mut run_result_trap = HashMap::new();
run_result_trap.insert(CraneliftTrap::Debug, AtomicU64::new(0));
run_result_trap.insert(CraneliftTrap::Resumable, AtomicU64::new(0));
for trapcode in TrapCode::non_user_traps() {
run_result_trap.insert(CraneliftTrap::User(*trapcode), AtomicU64::new(0));
}
Self {
valid_inputs: AtomicU64::new(0),
invalid_inputs: AtomicU64::new(0),
total_runs: AtomicU64::new(0),
run_result_success: AtomicU64::new(0),
run_result_timeout: AtomicU64::new(0),
run_result_trap,
}
}
}
#[derive(Debug)]
enum RunResult {
Success(Vec<DataValue>),
Trap(CraneliftTrap),
Timeout,
Error(Box<dyn std::error::Error>),
}
impl PartialEq for RunResult {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(RunResult::Success(l), RunResult::Success(r)) => {
l.len() == r.len() && l.iter().zip(r).all(|(l, r)| l.bitwise_eq(r))
}
(RunResult::Trap(l), RunResult::Trap(r)) => l == r,
(RunResult::Timeout, RunResult::Timeout) => true,
(RunResult::Error(_), RunResult::Error(_)) => unimplemented!(),
_ => false,
}
}
}
pub struct TestCase {
/// TargetIsa to use when compiling this test case
pub isa: isa::OwnedTargetIsa,
/// Functions under test
/// By convention the first function is the main function.
pub functions: Vec<Function>,
/// Control planes for function compilation.
/// There should be an equal amount as functions to compile.
pub ctrl_planes: Vec<ControlPlane>,
/// Generate multiple test inputs for each test case.
/// This allows us to get more coverage per compilation, which may be somewhat expensive.
pub inputs: Vec<TestCaseInput>,
/// Should this `TestCase` be tested after optimizations.
pub compare_against_host: bool,
}
impl fmt::Debug for TestCase {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if !self.compare_against_host {
writeln!(f, ";; Testing against optimized version")?;
}
PrintableTestCase::run(&self.isa, &self.functions, &self.inputs).fmt(f)
}
}
impl<'a> Arbitrary<'a> for TestCase {
fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result<Self> {
Self::generate(u).map_err(|_| {
STATISTICS.invalid_inputs.fetch_add(1, Ordering::SeqCst);
arbitrary::Error::IncorrectFormat
})
}
}
impl TestCase {
pub fn generate(u: &mut Unstructured) -> anyhow::Result<Self> {
let mut gen = FuzzGen::new(u);
let compare_against_host = gen.u.arbitrary()?;
// TestCase is meant to be consumed by a runner, so we make the assumption here that we're
// generating a TargetIsa for the host.
let mut builder =
builder_with_options(true).expect("Unable to build a TargetIsa for the current host");
let flags = gen.generate_flags(builder.triple().architecture)?;
gen.set_isa_flags(&mut builder, IsaFlagGen::Host)?;
let isa = builder.finish(flags)?;
// When generating functions, we allow each function to call any function that has
// already been generated. This guarantees that we never have loops in the call graph.
// We generate these backwards, and then reverse them so that the main function is at
// the start.
let func_count = gen.u.int_in_range(gen.config.testcase_funcs.clone())?;
let mut functions: Vec<Function> = Vec::with_capacity(func_count);
let mut ctrl_planes: Vec<ControlPlane> = Vec::with_capacity(func_count);
for i in (0..func_count).rev() {
// Function name must be in a different namespace than TESTFILE_NAMESPACE (0)
let fname = UserFuncName::user(1, i as u32);
let usercalls: Vec<(UserExternalName, Signature)> = functions
.iter()
.map(|f| {
(
f.name.get_user().unwrap().clone(),
f.stencil.signature.clone(),
)
})
.collect();
let func =
gen.generate_func(fname, isa.clone(), usercalls, ALLOWED_LIBCALLS.to_vec())?;
functions.push(func);
ctrl_planes.push(ControlPlane::arbitrary(gen.u)?);
}
// Now reverse the functions so that the main function is at the start.
functions.reverse();
let main = &functions[0];
let inputs = gen.generate_test_inputs(&main.signature)?;
Ok(TestCase {
isa,
functions,
ctrl_planes,
inputs,
compare_against_host,
})
}
fn to_optimized(&self) -> Self {
let mut ctrl_planes = self.ctrl_planes.clone();
let optimized_functions: Vec<Function> = self
.functions
.iter()
.zip(ctrl_planes.iter_mut())
.map(|(func, ctrl_plane)| {
let mut ctx = Context::for_function(func.clone());
ctx.optimize(self.isa.as_ref(), ctrl_plane).unwrap();
ctx.func
})
.collect();
TestCase {
isa: self.isa.clone(),
functions: optimized_functions,
ctrl_planes,
inputs: self.inputs.clone(),
compare_against_host: false,
}
}
/// Returns the main function of this test case.
pub fn main(&self) -> &Function {
&self.functions[0]
}
}
fn run_in_interpreter(interpreter: &mut Interpreter, args: &[DataValue]) -> RunResult {
// The entrypoint function is always 0
let index = FuncIndex::from_u32(0);
let res = interpreter.call_by_index(index, args);
match res {
Ok(ControlFlow::Return(results)) => RunResult::Success(results.to_vec()),
Ok(ControlFlow::Trap(trap)) => RunResult::Trap(trap),
Ok(cf) => RunResult::Error(format!("Unrecognized exit ControlFlow: {:?}", cf).into()),
Err(InterpreterError::FuelExhausted) => RunResult::Timeout,
Err(e) => RunResult::Error(e.into()),
}
}
fn run_in_host(trampoline: &Trampoline, args: &[DataValue]) -> RunResult {
let res = trampoline.call(args);
RunResult::Success(res)
}
/// These libcalls need a interpreter implementation in `build_interpreter`
const ALLOWED_LIBCALLS: &'static [LibCall] = &[
LibCall::CeilF32,
LibCall::CeilF64,
LibCall::FloorF32,
LibCall::FloorF64,
LibCall::TruncF32,
LibCall::TruncF64,
];
fn build_interpreter(testcase: &TestCase) -> Interpreter {
let mut env = FunctionStore::default();
for func in testcase.functions.iter() {
env.add(func.name.to_string(), &func);
}
let state = InterpreterState::default()
.with_function_store(env)
.with_libcall_handler(|libcall: LibCall, args: LibCallValues| {
use LibCall::*;
Ok(smallvec![match (libcall, &args[..]) {
(CeilF32, [DataValue::F32(a)]) => DataValue::F32(a.ceil()),
(CeilF64, [DataValue::F64(a)]) => DataValue::F64(a.ceil()),
(FloorF32, [DataValue::F32(a)]) => DataValue::F32(a.floor()),
(FloorF64, [DataValue::F64(a)]) => DataValue::F64(a.floor()),
(TruncF32, [DataValue::F32(a)]) => DataValue::F32(a.trunc()),
(TruncF64, [DataValue::F64(a)]) => DataValue::F64(a.trunc()),
_ => unreachable!(),
}])
});
let interpreter = Interpreter::new(state).with_fuel(Some(INTERPRETER_FUEL));
interpreter
}
static STATISTICS: Lazy<Statistics> = Lazy::new(Statistics::default);
fn run_test_inputs(testcase: &TestCase, run: impl Fn(&[DataValue]) -> RunResult) {
for args in &testcase.inputs {
STATISTICS.total_runs.fetch_add(1, Ordering::SeqCst);
// We rebuild the interpreter every run so that we don't accidentally carry over any state
// between runs, such as fuel remaining.
let mut interpreter = build_interpreter(&testcase);
let int_res = run_in_interpreter(&mut interpreter, args);
match int_res {
RunResult::Success(_) => {
STATISTICS.run_result_success.fetch_add(1, Ordering::SeqCst);
}
RunResult::Trap(trap) => {
STATISTICS.run_result_trap[&trap].fetch_add(1, Ordering::SeqCst);
// If this input traps, skip it and continue trying other inputs
// for this function. We've already compiled it anyway.
//
// We could catch traps in the host run and compare them to the
// interpreter traps, but since we already test trap cases with
// wasm tests and wasm-level fuzzing, the amount of effort does
// not justify implementing it again here.
continue;
}
RunResult::Timeout => {
// We probably generated an infinite loop, we should drop this entire input.
// We could `continue` like we do on traps, but timeouts are *really* expensive.
STATISTICS.run_result_timeout.fetch_add(1, Ordering::SeqCst);
return;
}
RunResult::Error(e) => panic!("interpreter failed: {e:?}"),
}
let res = run(args);
// This situation can happen when we are comparing the interpreter against the interpreter, and
// one of the optimization passes has increased the number of instructions in the function.
// This can cause the interpreter to run out of fuel in the second run, but not the first.
// We should ignore these cases.
// Running in the host should never return a timeout, so that should be ok.
if res == RunResult::Timeout {
return;
}
assert_eq!(int_res, res);
}
}
fuzz_target!(|testcase: TestCase| {
let mut testcase = testcase;
let fuel: u8 = std::env::args()
.find_map(|arg| arg.strip_prefix("--fuel=").map(|s| s.to_owned()))
.map(|fuel| fuel.parse().expect("fuel should be a valid integer"))
.unwrap_or_default();
for i in 0..testcase.ctrl_planes.len() {
testcase.ctrl_planes[i].set_fuel(fuel)
}
let testcase = testcase;
// This is the default, but we should ensure that it wasn't accidentally turned off anywhere.
assert!(testcase.isa.flags().enable_verifier());
// Periodically print statistics
let valid_inputs = STATISTICS.valid_inputs.fetch_add(1, Ordering::SeqCst);
if valid_inputs != 0 && valid_inputs % 10000 == 0 {
STATISTICS.print(valid_inputs);
}
if !testcase.compare_against_host {
let opt_testcase = testcase.to_optimized();
run_test_inputs(&testcase, |args| {
// We rebuild the interpreter every run so that we don't accidentally carry over any state
// between runs, such as fuel remaining.
let mut interpreter = build_interpreter(&opt_testcase);
run_in_interpreter(&mut interpreter, args)
});
} else {
let mut compiler = TestFileCompiler::new(testcase.isa.clone());
compiler
.add_functions(&testcase.functions[..], testcase.ctrl_planes.clone())
.unwrap();
let compiled = compiler.compile().unwrap();
let trampoline = compiled.get_trampoline(testcase.main()).unwrap();
run_test_inputs(&testcase, |args| run_in_host(&trampoline, args));
}
});