You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

133 lines
3.9 KiB

12 years ago
/*
* duk_hbuffer allocation and freeing.
*/
#include "duk_internal.h"
/* Allocate a new duk_hbuffer of a certain type and return a pointer to it
* (NULL on error). Write buffer data pointer to 'out_bufdata' (only if
* allocation successful).
*/
DUK_INTERNAL duk_hbuffer *duk_hbuffer_alloc(duk_heap *heap, duk_size_t size, duk_small_uint_t flags, void **out_bufdata) {
12 years ago
duk_hbuffer *res = NULL;
duk_size_t header_size;
duk_size_t alloc_size;
12 years ago
DUK_ASSERT(heap != NULL);
DUK_ASSERT(out_bufdata != NULL);
DUK_DDD(DUK_DDDPRINT("allocate hbuffer"));
12 years ago
16-bit fields and heap pointer compression work Memory optimization work for very low memory devices (96 to 256kB system RAM). Overall changes are: - 16-bit fields for various internal structures to reduce their size - Heap pointer compression to reduce pointer size to 16 bits When DUK_OPT_LIGHTFUNC_BUILTINS and the new low memory options are enabled, Duktape initial heap memory usage is about 23kB (compared to baseline of about 45kB) on x86. Unless low memory feature options are enabled, there should be no visible changes to Duktape behavior. More detailed changes: - 16-bit changes for duk_heaphdr: pointer compression, refcount - 16-bit changes for duk_hstring: hash, blen, and clen can all be 16 bits, use 0xFFFF as string byte length limit (call sites ensure this limit is never exceeded) - 16-bit changes for duk_hbuffer, use 0xFFFF as buffer length limit - 16-bit fields for hobject size (entry part, array part), drop hash part since it's not usually needed for extremely low memory environments - 16-bit changes for duk_hcompiledfunction - Heap pointer packing for stringtable - Heap pointer packing for 'strs' built-in strings list (saves around 600 to 700 bytes but may not be a good tradeoff because call site size will increase) Other changes: - Heaphdr NULL init fix. The original macros were broken: the double/single linked macro variants were the wrong way around. Now sets through macro to work properly with compressed pointers. - Rename duk_hbuffer CURR_DATA_PTR -> DATA_PTR to reduce macro length (previous name was tediously long) - Rename buffer "usable_size" to "alloc_size" throughout as they have been the same for a while now (they used to differ when buffer had an extra NUL). - Add memory optimization markers to Duktape.env (pointer compression and individual 16-bit field options) - Rename a few internal fields for clarity: duk_hobject 'p' to 'props', heap->st to heap->strtable - Add a safety check for buffer alloc size (should not be triggered but prevents wrapping if call sites don't properly check for sizes) - Other minor cleanups
10 years ago
/* Size sanity check. Should not be necessary because caller is
* required to check this, but we don't want to cause a segfault
* if the size wraps either in duk_size_t computation or when
* storing the size in a 16-bit field.
*/
if (size > DUK_HBUFFER_MAX_BYTELEN) {
DUK_D(DUK_DPRINT("hbuffer alloc failed: size too large: %ld", (long) size));
return NULL; /* no need to write 'out_bufdata' */
16-bit fields and heap pointer compression work Memory optimization work for very low memory devices (96 to 256kB system RAM). Overall changes are: - 16-bit fields for various internal structures to reduce their size - Heap pointer compression to reduce pointer size to 16 bits When DUK_OPT_LIGHTFUNC_BUILTINS and the new low memory options are enabled, Duktape initial heap memory usage is about 23kB (compared to baseline of about 45kB) on x86. Unless low memory feature options are enabled, there should be no visible changes to Duktape behavior. More detailed changes: - 16-bit changes for duk_heaphdr: pointer compression, refcount - 16-bit changes for duk_hstring: hash, blen, and clen can all be 16 bits, use 0xFFFF as string byte length limit (call sites ensure this limit is never exceeded) - 16-bit changes for duk_hbuffer, use 0xFFFF as buffer length limit - 16-bit fields for hobject size (entry part, array part), drop hash part since it's not usually needed for extremely low memory environments - 16-bit changes for duk_hcompiledfunction - Heap pointer packing for stringtable - Heap pointer packing for 'strs' built-in strings list (saves around 600 to 700 bytes but may not be a good tradeoff because call site size will increase) Other changes: - Heaphdr NULL init fix. The original macros were broken: the double/single linked macro variants were the wrong way around. Now sets through macro to work properly with compressed pointers. - Rename duk_hbuffer CURR_DATA_PTR -> DATA_PTR to reduce macro length (previous name was tediously long) - Rename buffer "usable_size" to "alloc_size" throughout as they have been the same for a while now (they used to differ when buffer had an extra NUL). - Add memory optimization markers to Duktape.env (pointer compression and individual 16-bit field options) - Rename a few internal fields for clarity: duk_hobject 'p' to 'props', heap->st to heap->strtable - Add a safety check for buffer alloc size (should not be triggered but prevents wrapping if call sites don't properly check for sizes) - Other minor cleanups
10 years ago
}
if (flags & DUK_BUF_FLAG_EXTERNAL) {
header_size = sizeof(duk_hbuffer_external);
alloc_size = sizeof(duk_hbuffer_external);
} else if (flags & DUK_BUF_FLAG_DYNAMIC) {
header_size = sizeof(duk_hbuffer_dynamic);
alloc_size = sizeof(duk_hbuffer_dynamic);
12 years ago
} else {
header_size = sizeof(duk_hbuffer_fixed);
alloc_size = sizeof(duk_hbuffer_fixed) + size;
16-bit fields and heap pointer compression work Memory optimization work for very low memory devices (96 to 256kB system RAM). Overall changes are: - 16-bit fields for various internal structures to reduce their size - Heap pointer compression to reduce pointer size to 16 bits When DUK_OPT_LIGHTFUNC_BUILTINS and the new low memory options are enabled, Duktape initial heap memory usage is about 23kB (compared to baseline of about 45kB) on x86. Unless low memory feature options are enabled, there should be no visible changes to Duktape behavior. More detailed changes: - 16-bit changes for duk_heaphdr: pointer compression, refcount - 16-bit changes for duk_hstring: hash, blen, and clen can all be 16 bits, use 0xFFFF as string byte length limit (call sites ensure this limit is never exceeded) - 16-bit changes for duk_hbuffer, use 0xFFFF as buffer length limit - 16-bit fields for hobject size (entry part, array part), drop hash part since it's not usually needed for extremely low memory environments - 16-bit changes for duk_hcompiledfunction - Heap pointer packing for stringtable - Heap pointer packing for 'strs' built-in strings list (saves around 600 to 700 bytes but may not be a good tradeoff because call site size will increase) Other changes: - Heaphdr NULL init fix. The original macros were broken: the double/single linked macro variants were the wrong way around. Now sets through macro to work properly with compressed pointers. - Rename duk_hbuffer CURR_DATA_PTR -> DATA_PTR to reduce macro length (previous name was tediously long) - Rename buffer "usable_size" to "alloc_size" throughout as they have been the same for a while now (they used to differ when buffer had an extra NUL). - Add memory optimization markers to Duktape.env (pointer compression and individual 16-bit field options) - Rename a few internal fields for clarity: duk_hobject 'p' to 'props', heap->st to heap->strtable - Add a safety check for buffer alloc size (should not be triggered but prevents wrapping if call sites don't properly check for sizes) - Other minor cleanups
10 years ago
DUK_ASSERT(alloc_size >= sizeof(duk_hbuffer_fixed)); /* no wrapping */
12 years ago
}
res = (duk_hbuffer *) DUK_ALLOC(heap, alloc_size);
if (DUK_UNLIKELY(res == NULL)) {
goto alloc_error;
12 years ago
}
/* zero everything unless requested not to do so */
#if defined(DUK_USE_ZERO_BUFFER_DATA)
DUK_MEMZERO((void *) res,
(flags & DUK_BUF_FLAG_NOZERO) ? header_size : alloc_size);
#else
DUK_MEMZERO((void *) res, header_size);
#endif
if (flags & DUK_BUF_FLAG_EXTERNAL) {
duk_hbuffer_external *h;
h = (duk_hbuffer_external *) res;
DUK_UNREF(h);
*out_bufdata = NULL;
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
#if defined(DUK_USE_HEAPPTR16)
/* the compressed pointer is zeroed which maps to NULL, so nothing to do. */
#else
DUK_HBUFFER_EXTERNAL_SET_DATA_PTR(heap, h, NULL);
#endif
#endif
DUK_ASSERT(DUK_HBUFFER_EXTERNAL_GET_DATA_PTR(heap, h) == NULL);
} else if (flags & DUK_BUF_FLAG_DYNAMIC) {
duk_hbuffer_dynamic *h = (duk_hbuffer_dynamic *) res;
12 years ago
void *ptr;
12 years ago
if (size > 0) {
DUK_ASSERT(!(flags & DUK_BUF_FLAG_EXTERNAL)); /* alloc external with size zero */
DUK_DDD(DUK_DDDPRINT("dynamic buffer with nonzero size, alloc actual buffer"));
#if defined(DUK_USE_ZERO_BUFFER_DATA)
ptr = DUK_ALLOC_ZEROED(heap, size);
#else
11 years ago
ptr = DUK_ALLOC(heap, size);
#endif
if (DUK_UNLIKELY(ptr == NULL)) {
/* Because size > 0, NULL check is correct */
goto alloc_error;
12 years ago
}
*out_bufdata = ptr;
12 years ago
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap, h, ptr);
12 years ago
} else {
*out_bufdata = NULL;
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
#if defined(DUK_USE_HEAPPTR16)
/* the compressed pointer is zeroed which maps to NULL, so nothing to do. */
#else
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap, h, NULL);
#endif
12 years ago
#endif
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, h) == NULL);
12 years ago
}
} else {
*out_bufdata = (void *) ((duk_hbuffer_fixed *) res + 1);
12 years ago
}
16-bit fields and heap pointer compression work Memory optimization work for very low memory devices (96 to 256kB system RAM). Overall changes are: - 16-bit fields for various internal structures to reduce their size - Heap pointer compression to reduce pointer size to 16 bits When DUK_OPT_LIGHTFUNC_BUILTINS and the new low memory options are enabled, Duktape initial heap memory usage is about 23kB (compared to baseline of about 45kB) on x86. Unless low memory feature options are enabled, there should be no visible changes to Duktape behavior. More detailed changes: - 16-bit changes for duk_heaphdr: pointer compression, refcount - 16-bit changes for duk_hstring: hash, blen, and clen can all be 16 bits, use 0xFFFF as string byte length limit (call sites ensure this limit is never exceeded) - 16-bit changes for duk_hbuffer, use 0xFFFF as buffer length limit - 16-bit fields for hobject size (entry part, array part), drop hash part since it's not usually needed for extremely low memory environments - 16-bit changes for duk_hcompiledfunction - Heap pointer packing for stringtable - Heap pointer packing for 'strs' built-in strings list (saves around 600 to 700 bytes but may not be a good tradeoff because call site size will increase) Other changes: - Heaphdr NULL init fix. The original macros were broken: the double/single linked macro variants were the wrong way around. Now sets through macro to work properly with compressed pointers. - Rename duk_hbuffer CURR_DATA_PTR -> DATA_PTR to reduce macro length (previous name was tediously long) - Rename buffer "usable_size" to "alloc_size" throughout as they have been the same for a while now (they used to differ when buffer had an extra NUL). - Add memory optimization markers to Duktape.env (pointer compression and individual 16-bit field options) - Rename a few internal fields for clarity: duk_hobject 'p' to 'props', heap->st to heap->strtable - Add a safety check for buffer alloc size (should not be triggered but prevents wrapping if call sites don't properly check for sizes) - Other minor cleanups
10 years ago
DUK_HBUFFER_SET_SIZE(res, size);
12 years ago
DUK_HEAPHDR_SET_TYPE(&res->hdr, DUK_HTYPE_BUFFER);
if (flags & DUK_BUF_FLAG_DYNAMIC) {
DUK_HBUFFER_SET_DYNAMIC(res);
if (flags & DUK_BUF_FLAG_EXTERNAL) {
DUK_HBUFFER_SET_EXTERNAL(res);
}
} else {
DUK_ASSERT(!(flags & DUK_BUF_FLAG_EXTERNAL));
12 years ago
}
DUK_HEAP_INSERT_INTO_HEAP_ALLOCATED(heap, &res->hdr);
DUK_DDD(DUK_DDDPRINT("allocated hbuffer: %p", (void *) res));
12 years ago
return res;
alloc_error:
DUK_DD(DUK_DDPRINT("hbuffer allocation failed"));
12 years ago
DUK_FREE(heap, res);
return NULL; /* no need to write 'out_bufdata' */
12 years ago
}
/* For indirect allocs. */
DUK_INTERNAL void *duk_hbuffer_get_dynalloc_ptr(duk_heap *heap, void *ud) {
duk_hbuffer_dynamic *buf = (duk_hbuffer_dynamic *) ud;
DUK_UNREF(heap);
return (void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, buf);
}