You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

580 lines
23 KiB

/*
* Minimal ES2015+ Promise polyfill
*
* Limitations (also see XXX in source):
*
* - Caller must manually call Promise.runQueue() to process pending jobs.
* - No Promise subclassing or non-subclass foreign Promises yet.
* - Promise.all() and Promise.race() assume a plain array, not iterator.
* - Doesn't handle errors from core operations, e.g. out-of-memory or
* internal error when queueing/running jobs. These are implementation
* defined for the most part.
* - Unhandled rejection 'reject' and 'handle' events don't have the same
* ordering as in Node.js at present. Unhandled rejection behavior also
* hasn't been checked against latest ES specifications.
*
* This polyfill was originally used to gain a better understanding of the
* ES2015 specification algorithms, before implementing Promises natively.
*
* The polyfill uses a Symbol to mark Promise instances, but falls back to
* an ordinary (non-enumerable) property if no Symbol support is available.
*
* See also: https://github.com/stefanpenner/es6-promise#readme
*/
(function () {
if (typeof Promise !== 'undefined') { return; }
// As far as the specification goes, almost all Promise settling is via
// concrete resolve/reject functions with mutual protection from being
// called multiple times. Sometimes the actual resolve/reject functions
// are not exposed to calling code, and can safely be omitted which is
// useful because resolve/reject functions are memory heavy. These
// optimizations are enabled by default; set to false to disable.
var allowOptimization = true;
// Job queue to simulate ES2015 job queues, linked list, 'next' reference.
// While ES2015 doesn't guarantee the relative order of jobs in different
// job queues, within a certain queue strict FIFO is required. See ES5.1
// https://www.ecma-international.org/ecma-262/6.0/#sec-jobs-and-job-queues:
// "The PendingJob records from a single Job Queue are always initiated in
// FIFO order. This specification does not define the order in which
// multiple Job Queues are serviced."
var queueHead = null, queueTail = null;
function enqueueJob(job) {
// Avoid inheriting conflicting properties if caller already didn't
// ensure it.
Object.setPrototypeOf(job, null);
compact(job);
if (queueHead) {
queueTail.next = job;
compact(queueTail);
queueTail = job;
} else {
queueHead = job;
queueTail = job;
}
}
function dequeueJob() {
var ret = queueHead;
if (ret) {
queueHead = ret.next;
if (!queueHead) {
queueTail = null;
}
}
return ret;
}
// Helper to define/modify properties more compactly.
function def(obj, key, val, attrs) {
if (attrs === void 0) { attrs = 'wc'; }
Object.defineProperty(obj, key, {
value: val,
writable: attrs.indexOf('w') >= 0,
enumerable: attrs.indexOf('e') >= 0,
configurable: attrs.indexOf('c') >= 0
});
}
// Helper for Duktape specific object compaction.
var compact = (typeof Duktape === 'object' && Duktape.compact) ||
function (v) { return v; };
// Shared no-op function.
var nop = function nop() {};
// Promise detection (plain or subclassed Promise), in spec has
// [[PromiseState]] internal slot which isn't affected by Proxy
// behaviors etc.
var haveSymbols = (typeof Symbol === 'function');
var promiseMarker = haveSymbols ? Symbol('promise') : '__PromiseInstance__';
function isPromise(p) {
return p !== null && typeof p === 'object' && promiseMarker in p;
}
function requirePromise(p) {
if (!isPromise(p)) { throw new TypeError('Promise required'); }
}
// Raw fulfill/reject operations, assume resolution processing done.
// The specification algorithms RejectPromise() and FulfillPromise()
// assert that the Promise is pending so the initial check in these
// implementations (p.state !== void 0) is not needed: the resolve/reject
// function pairs always ensure a Promise is not ultimately settled twice.
// With some of the "as if" optimizations we rely on these raw operations
// to protect against multiple attempts to settle the Promise so the checks
// are actually needed.
function doFulfill(p, val) {
if (p.state !== void 0) { return; } // additional check needed with optimizations
p.state = true; p.value = val;
var reactions = p.fulfillReactions;
delete p.fulfillReactions; delete p.rejectReactions; compact(p);
reactions.forEach(function (ent) {
// Conceptually: create a job from the registered reaction.
// In practice: reuse the reaction object because it is unique,
// never leaks to calling code, and is never reused.
ent.value = val;
enqueueJob(ent);
});
}
function doReject(p, val) {
if (p.state !== void 0) { return; } // additional check needed with optimizations
p.state = false; p.value = val;
var reactions = p.rejectReactions;
delete p.fulfillReactions; delete p.rejectReactions; compact(p);
reactions.forEach(function (ent) {
// As for doFulfill(), reuse the registered reaction object.
ent.value = val;
if (!ent.handler) {
// Without a .handler, we're dealing with an optimized
// entry where only .target exists and the resolve/reject
// behavior is simulated when the entry runs. However,
// we need to know whether to simulate resolve or reject
// at that time, so flag rejection explicitly (resolve
// requires no flag).
ent.rejected = true;
}
enqueueJob(ent);
});
if (reactions.length === 0 && !p.rejectionHandled) {
// Unhandled at resolution.
p.unhandled = 1;
cons.potentiallyUnhandled.push(p);
}
}
// Create a new resolve/reject pair for a Promise. Multiple pairs are
// needed in thenable handling, with all but the most recent pair being
// neutralized ('alreadyResolved'). Because Promises are resolved only
// via this resolution process, it shouldn't be possible for the Promise
// to be settled but check it anyway: it may be useful for e.g. the C API
// to forcibly resolve/fulfill/reject a Promise regardless of extant
// resolve/reject functions.
function createResolutionFunctions(p) {
// In ES2015 the resolve/reject functions have a shared 'state' object
// with a [[AlreadyResolved]] slot. Here we use an in-scope variable.
var alreadyResolved = false;
var reject = function (err) {
if (new.target) { throw new TypeError('reject is not constructable'); }
if (alreadyResolved) { return; }
alreadyResolved = true; // neutralize resolve/reject
if (p.state !== void 0) { return; }
doReject(p, err);
};
reject.prototype = null; // drop .prototype object
var resolve = function (val) {
if (new.target) { throw new TypeError('resolve is not constructable'); }
if (alreadyResolved) { return; }
alreadyResolved = true; // neutralize resolve/reject
if (p.state !== void 0) { return; }
if (val === p) {
return doReject(p, new TypeError('self resolution'));
}
try {
var then = (val !== null && typeof val === 'object' &&
val.then);
if (typeof then === 'function') {
var t = createResolutionFunctions(p);
var optimized = allowOptimization;
if (optimized) {
// XXX: this optimization may not be useful because the
// job entry runs usually very quickly, and as part of
// running the job, the resolve/reject function must be
// created for the then() call.
return enqueueJob({
thenable: val,
then: then,
target: p
});
} else {
return enqueueJob({
thenable: val,
then: then,
resolve: t.resolve,
reject: t.reject
});
}
// old resolve/reject is neutralized, only new pair is live
}
return doFulfill(p, val);
} catch (e) {
return doReject(p, e);
}
};
resolve.prototype = null; // drop .prototype object
return { resolve: resolve, reject: reject };
}
// Job queue simulation.
function runQueueEntry() {
// XXX: In optimized cases, creating both resolution functions is
// not always necessary. There's also no need for alreadySettled
// protections for the optimized cases either.
var job = dequeueJob();
var tmp;
if (!job) { return false; }
if (job.then) {
// PromiseResolveThenableJob
if (job.target) {
tmp = createResolutionFunctions(job.target);
}
try {
if (tmp) {
void job.then.call(job.thenable, tmp.resolve, tmp.reject);
} else {
void job.then.call(job.thenable, job.resolve, job.reject);
}
} catch (e) {
if (tmp) {
tmp.reject.call(void 0, e);
} else {
job.reject.call(void 0, e);
}
}
} else {
// PromiseReactionJob
try {
if (job.handler === void 0) {
// Optimized case where two Promises are tied together
// without the need for an actual 'handler'.
tmp = createResolutionFunctions(job.target); // must exist in this case
tmp = job.rejected ? tmp.reject : tmp.resolve;
tmp.call(void 0, job.value);
return true;
} else if (job.handler === 'Identity') {
res = job.value;
} else if (job.handler === 'Thrower') {
throw job.value;
} else {
res = job.handler.call(void 0, job.value);
}
if (job.target) {
createResolutionFunctions(job.target).resolve.call(void 0, res);
} else {
job.resolve.call(void 0, res);
}
} catch (e) {
if (job.target) {
createResolutionFunctions(job.target).reject.call(void 0, e);
} else {
job.reject.call(void 0, e);
}
}
}
return true;
}
// %Promise% constructor.
var cons = function Promise(executor) {
if (!new.target) {
throw new TypeError('Promise must be called as a constructor');
}
if (typeof executor !== 'function') {
throw new TypeError('executor must be callable');
}
var _this = this;
def(this, promiseMarker, true, '');
def(this, 'state', void 0); // undefined (pending), true/false
def(this, 'value', void 0);
def(this, 'fulfillReactions', []);
def(this, 'rejectReactions', []);
def(this, 'rejectionHandled', false); // XXX: roll into 'state' to minimize fields
compact(this);
var t = createResolutionFunctions(this);
try {
void executor(t.resolve, t.reject);
} catch (e) {
t.reject(e);
}
};
var proto = cons.prototype;
def(cons, 'prototype', proto, '');
def(cons, 'potentiallyUnhandled', [], '');
// %Promise%.resolve().
// XXX: direct handling
function resolve(val) {
if (isPromise(val) && val.constructor === this) { return val; }
return new Promise(function (resolve, reject) { resolve(val); });
}
// %Promise%.reject()
// XXX: direct handling
function reject(val) {
return new Promise(function (resolve, reject) { reject(val); });
}
// %Promise%.all().
function all(list) {
if (!Array.isArray(list)) {
throw new TypeError('non-array all() argument not supported');
}
var resolveFn, rejectFn;
var p = new Promise(function (resolve, reject) {
resolveFn = resolve; rejectFn = reject;
});
var values = [];
var index = 0;
var remaining = 1; // remaining intentionally 1, not 0
list.forEach(function (x) { // XXX: no iterator support
var t = Promise.resolve(x);
var f = function promiseAllElement(val) {
var F = promiseAllElement;
if (F.alreadyCalled) { return; }
F.alreadyCalled = true;
values[F.index] = val;
if (--remaining === 0) {
resolveFn.call(void 0, values);
}
};
// In ES2015 the functions would reference a shared state object
// explicitly. Here the conceptual state is in scope.
f.index = index++;
remaining++;
t.then(f, rejectFn);
});
if (--remaining === 0) {
resolveFn.call(void 0, values);
}
return p;
}
// %Promise%.race().
function race(list) {
if (!Array.isArray(list)) {
throw new TypeError('non-array race() argument not supported');
}
var resolveFn, rejectFn;
var p = new Promise(function (resolve, reject) {
resolveFn = resolve; rejectFn = reject;
});
list.forEach(function (x) { // XXX: no iterator support
var t = Promise.resolve(x);
var func = t.then;
var optimized = (func === then) && allowOptimization;
if (optimized) {
// If the .then() of the Promise.resolve() is the original
// built-in implementation, we don't need to queue the actual
// resolve and reject functions explicitly because (1) the
// functions don't leak and can't be called by anyone else,
// and (2) the onFulfilled/onRejected functions would just
// directly forward the result from 't' to 'p'.
optimizedThen(t, p);
} else {
// Generic case, the result Promise of .then() is ignored.
void func.call(t, resolveFn, rejectFn);
}
});
return p;
}
// Shared helper for checking unhandled rejections after settling.
function checkRejectionHandling(p) {
if (p.unhandled === 2) {
if (p.rejectionHandled) {
// Unhandled, already notified, need handled notification.
p.unhandled = 3;
cons.potentiallyUnhandled.push(p);
} else {
// Maybe handled later.
}
} else {
// XXX: If this.unhandled was 1, we'd like to remove
// the Promise from cons.potentiallyUnhandled list
// but skip that because it would mean an expensive
// list remove. If cons.potentiallyUnhandled was a
// Set, it would be natural to remove from Set here.
delete p.unhandled;
}
}
// %PromisePrototype%.then(), also used for .catch().
function then(onFulfilled, onRejected) {
// No subclassing support here now, no NewPromiseCapability() handling.
requirePromise(this);
var resolveFn, rejectFn;
var p = new Promise(function (resolve, reject) {
resolveFn = resolve; rejectFn = reject;
});
var optimized = allowOptimization;
if (typeof onFulfilled !== 'function') { onFulfilled = 'Identity'; }
if (typeof onRejected !== 'function') { onRejected = 'Thrower'; }
// This is unconditional on purpose: if 'onRejected' is not callable,
// the rejection of 'this' is forwarded to 'p' so 'this' is considered
// handled.
this.rejectionHandled = true;
if (this.state === void 0) { // pending
if (optimized) {
this.fulfillReactions.push({
handler: onFulfilled,
target: p
});
this.rejectReactions.push({
handler: onRejected,
target: p
});
} else {
this.fulfillReactions.push({
handler: onFulfilled,
resolve: resolveFn,
reject: rejectFn
});
this.rejectReactions.push({
handler: onRejected,
resolve: resolveFn,
reject: rejectFn
});
}
} else if (this.state) { // fulfilled
if (optimized) {
enqueueJob({
handler: onFulfilled,
target: p,
value: this.value
});
} else {
enqueueJob({
handler: onFulfilled,
resolve: resolveFn,
reject: rejectFn,
value: this.value
});
}
} else { // rejected
checkRejectionHandling(this);
if (optimized) {
enqueueJob({
handler: onRejected,
target: p,
value: this.value
});
} else {
enqueueJob({
handler: onRejected,
resolve: resolveFn,
reject: rejectFn,
value: this.value
});
}
}
return p;
}
// Optimized .then() where a specific source Promise just forwards its
// result to a target Promise unless its already settled.
function optimizedThen(source, target) {
if (source.state === void 0) { // pending
source.fulfillReactions.push({
target: target
});
source.rejectReactions.push({
target: target
});
} else if (source.state) { // fulfilled
enqueueJob({
target: target,
value: source.value
});
} else { // rejected
checkRejectionHandling(source);
enqueueJob({
target: target,
value: source.value,
rejected: true
});
}
}
// %PromisePrototype%.catch.
var _catch = function (onRejected) {
return this.then.call(this, void 0, onRejected);
};
def(_catch, 'name', 'catch', 'c');
// %Promise%.try(), https://github.com/tc39/proposal-promise-try,
// simple polyfill-style implementation.
var _try = function (func) {
// XXX: check 'this' for callability, or Promise / subclass.
return new this(function (resolve, reject) { resolve(func()); });
};
def(_try, 'name', 'try', 'c');
// Unhandled rejection notifications after a "tick", which seems to be
// interpreted as "run jobs until job queue is empty".
// https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-rejections
// https://www.ecma-international.org/ecma-262/8.0/#sec-host-promise-rejection-tracker
function checkUnhandledRejections() {
var idx;
// The unhandledRejection() callbacks may have queued more Promises,
// settled existing Promises on the list, etc. Keep going until
// the list is empty. Null out entries to allow early GC when the
// Promises are no longer reachable. Callbacks may also queue more
// ordinary Promise jobs; they are also handled to completion within
// the tick.
// XXX: It might be more natural to handle the notification callbacks
// via the job queue. This might be a bit simpler, but would change
// the Promise job vs. unhandledRejection callback ordering a bit.
// For example, Node.js emits 'handle' events before the related
// catch callbacks are called, while the polyfill in its current
// state does not.
for (idx = 0; idx < cons.potentiallyUnhandled.length; idx++) {
var p = cons.potentiallyUnhandled[idx];
cons.potentiallyUnhandled[idx] = null;
// The unhandledRejection() callback runs intentionally without a
// try-catch. If the application wants an unhandled rejection to
// cause a process exit, the callback may throw which causes an
// uncaught exception.
//
// Use a custom object argument convention for flexibility.
if (p.unhandled === 1) {
cons.unhandledRejection({ promise: p, event: 'reject', reason: p.value });
p.unhandled = 2;
} else if (p.unhandled === 3) {
cons.unhandledRejection({ promise: p, event: 'handle', reason: p.value });
delete p.unhandled;
}
}
cons.potentiallyUnhandled.length = 0;
return idx > 0; // true if we processed entries
}
// Define visible objects and properties.
(function () {
def(this, 'Promise', cons);
def(cons, 'resolve', resolve);
def(cons, 'reject', reject);
def(cons, 'all', all);
def(cons, 'race', race);
def(cons, 'try', _try);
def(cons, 'isPolyfill', true); // needed by e.g. testcases
def(proto, 'then', then);
def(proto, 'catch', _catch);
if (haveSymbols) {
def(proto, Symbol.toStringTag, 'Promise', 'c');
}
// Custom API to drive the "job queue". We only want to exit when
// there are no more Promise jobs or unhandledRejection() callbacks,
// i.e. no more work to do. Note that an unhandledRejection()
// callback may queue more Promise job entries.
def(cons, 'runQueue', function _runQueueUntilEmpty() {
do {
while (runQueueEntry()) {}
var recheck = checkUnhandledRejections();
} while(recheck);
});
def(cons, 'unhandledRejection', nop);
compact(this); compact(cons); compact(proto);
}());
}());