Rename and reuse a previously internal duk_push_object_internal() which just
pushes a bare object (= object without an internal prototype) which is useful
for various dict / tracking map purposes.
These can be used whenever we're 100% certain that the value stack index
exists and the type matches expected type. When these are true, a
duk_hstring, duk_hbuffer, or duk_hobject pointer fetch can be inlined to
small code.
Saves a few hundred bytes of footprint:
* duk_dup_0() = duk_dup(ctx, 0), duk_dup_1() = duk_dup(ctx, 1), etc.
* duk_dup_m2() = duk_dup(ctx, -2), etc.
* duk_dup_m1() is not added, because duk_dup_top() is the same thing
* Plain buffers still inherit from ArrayBuffer.prototype.
* Plain buffers won't object coerce, so Object(plainBuffer) fails.
* All buffer object related methods throw an error; their function bodies
are essentially empty. Note that this includes bindings such as
String.fromBuffer(), ArrayBuffer.allocPlain(), ArrayBuffer.plainOf(),
and so on. In essence, you can index plain buffers in Ecmascript but
the buffer values must be created via the C API.
* Duktape custom bindings like Duktape.dec('hex', 'deadbeef') still work
and produce plain buffers.
Change handling of plain buffers so that they behave like ArrayBuffer
instances to Ecmascript code, with limitations such as not being
extensible and all properties being virtualized. This simplifies
Ecmascript code as plain buffers are just lightweight ArrayBuffers
(similarly to how lightfuncs appear as function objects). There are
a lot of small changes in how the built-in objects and methods, and
the C API deals with plain buffer values.
Also make a few small changes to plain pointer and lightfunc handling
to improve consistency with how plain buffers are now handled.
These don't play well with the API currently: the Duktape specific error
codes don't have Ecmascript Error class counterparts so they don't get
represented usefully as Ecmascript objects (e.g. AllocError is a plain
Error from Ecmascript point of view).
There's no real need for Duktape specific error code. Some of the codes
had become unused; a couple were used but Ecmascript standard types can
be used instead.
Also minor error message tweaking.
Improve readability by doing the following renames:
* duk_hcompiledfunction -> duk_hcompfunc
* duk_hnativefunction -> duk_hnatfunc
* duk_hbufferobject -> duk_hbufobj
Corresponding renames for all caps defines.
This makes it easier to pass C pointers to state structs etc without having
to use duk_push_pointer() and the value stack.
Change internal duk_safe_call() sites to use udata where appropriate.
* Use shared error macros and shared error handler to reduce the size of call
sites of common errors.
* Make zero argument DUK_ERROR() calls non-vararg calls to reduce call site
footprint. Non-vararg calls have smaller call sites and because there are
a lot of call sites, this turns out to be significant.
* Remove variadic macros from internal DUK_ERROR() macro set and add separate
macros for argument counts 0 to 4; this is more portable and requires less
conditional code, and works well when a non-vararg call is used for most
error call sites.
* Rework macro / function argument order for the error path, try to keep 'thr'
in the same argument slot to avoid unnecessary register moves.
* Pack linenumber and error code into a single 32-bit argument when possible,
removes one more constant load from the call site.
* Convert some internal errors to RangeErrors when the underlying cause is an
implementation limit (such as a compiler temp limit) rather than an actual
unexpected internal situation.
* Simplify and share a few error messages to reduce string count.
* Use a single step value encoding approach instead of a two-step one
* Rework slow path value encoding to rewind: by simply rewinding the
ufwriter the awkward two-step approach can be avoided.
* Also rework automatic "naked" key escape code to be a bit simpler.
* Fix automatic unboxing of strings, numbers, etc in JSON.stringify()
fast path; it needs to invoke .toString() / .valueOf() explicitly
if they have been replaced in the object itself or in the prototype
chain.
- Faster hex decode invalid input check for duk_hex_decode() fast path
- Faster JX/JC hex encode
- Slightly faster JX/JC hex decode (avoid string intern for temp value)
- Relocate decode tables, they may be useful in other files later
- Loop typing changes
Also fix a minor fast path bug when unboxing String, Number, or Boolean.
Recursion depth was not decremented so it would accumulate and potentially
cause the fast path to fail unnecessarily. Outwardly this has no other
impact than the serialization being slower than intended.
Reorder tags to accommodate a separate 'unused' tag so that 'undefined' can
become a single tag write (instead of tag + value like booleans). This is
good because 'undefined' values are involved in e.g. value stack resizes and
are performance relevant.
Also reorder tags so that "is heap allocated" check can be a single bit test
instead of a comparison when using non-packed duk_tval. This makes every
DECREF potentially faster because an "is heap allocated" test appears in
every DECREF.
Because "unused" is not intended to appear anywhere in actual use (e.g. as
a value stack value, as a property value, etc), "unused" values will fall
into the default clause of DUK_TAG_xxx switch case statements. Add an assert
to every such default clause that the value is not intended to be "unused".
Remove duk_push_unused() as it should no longer be used. It was only used
by the debugger protocol; refuse an inbound "unused" value in the debugger.
This is not breaking compatibility because there was no legitimate usage for
the debug client sending requests with "unused" values.