* Change duk_bool_to to duk_small_uint_t from duk_small_int_t. This may
cause some sign warnings in calling code.
* Reject attempt to unpack an array-like value whose length is 2G or over;
previously was not checked explicitly, and the length was cast to duk_idx_t
with a sign change and the unpack would then later fail. Now it fails with
a clean RangeError.
* Add wrap check for Node.js Buffer.concat().
* API DUK_TYPE_xxx, DUK_TYPE_MASK_xxx, flag constants etc are now unsigned.
Both duk_hthread and duk_context typedefs resolve to struct duk_hthread
internally. In external API duk_context resolves to struct duk_hthread
which is intentionally left undefined as the struct itself is not
dereferenced. Change internal code to use duk_hthread exclusively which
removes unnecessary and awkward thr <-> ctx casts from internals.
The basic guidelines are:
* Public API uses duk_context in prototype declarations. The intent is to
hide the internal type, and there's already a wide dependency on the
type name.
* All internal code, both declarations and definitions, use duk_hthread
exclusively. This is done even for API functions, i.e. an API function
declared as "void duk_foo(duk_context *ctx);" is then defined as
"void duk_foo(duk_hthread *thr);".
Remove the special ecma-to-ecma call setup code and just use the normal
unprotected call setup code for that instead. Most of the code is the
same; just before calling into the bytecode executor check if the current
executor can be reused, and if so, indicate the situation using a special
return code.
Also remove internal duk_handle_call_protected() and implement all
protected API calls via duk_safe_call(). This reduces footprint and code
duplication further.
Rework call handling to use helpers more to make the call handling code
easier to follow.
Various other minor changer, e.g. DUK_OP_NEW is now DUK_OP_CONSCALL and
bytecode sets up the initial default instance.
* Make value stack and call stack limits configurable via DUK_USE_xxx
options. Also make value stack grow/shrink constants configurable.
* Rewrite value stack grow/shrink check primitives for better hot/cold path
handling.
* Use a proportional spare for grow and shrink sizes so that applications
needing a large value stack have fewer value stack resizes.
* Grow value stack allocation when entering a call or when explicitly requested
via e.g. duk_require_stack().
* Never shrink the value stack when entering a call, so that the unwind path
is guaranteed to have value stack to handle a protected call return. This
guarantee is only needed for protected call but is now applied to all calls
for simplicity.
* Don't perform a value stack shrink check at all in function return anymore.
It would be OK from protected call semantics perspective to do a shrink
attempt without throwing if it fails.
* Perform a value stack shrink check in mark-and-sweep only for now. When
emergency GC is running, shrink to a minimal size respecting current value
stack reserve.
Remove thr->callstack as a monolithic array and replace it with a linked list
of duk_activations. thr->callstack_curr is the current call (or NULL if no
call is in progress), and act->parent chains to a previous call or NULL.
thr->callstack_top is kept because it's needed by some internals at present;
it may be removed in the future.
* Comment on duk_buffer_to_string() safety w.r.t. potentially pushing
Symbol values.
* Went through all duk_push_(l)string() call sites too.
* Minor footprint optimization for pushing empty strings (use more
compact internal helper).
* Strings with 0xFF byte prefix are considered special symbols: they have
typeof "symbol" but still mostly behave as strings (e.g. allow ToString)
so that existing code dealing with internal keys, especially inside
Duktape, can work with fewer changes.
* Strings with 0x80 byte prefix are global symbols, e.g. Symbol.for('foo')
creates the byte representatio: 0x80 "foo"
* Strings with 0x81 byte prefix are unique symbols; the 0x81 byte is followed
by the Symbol description, and an internal string component ensuring
uniqueness is separated by a 0xFF byte (which can never appear anywhere in
an extended UTF-8 string). The unique suffix is up to Duktape internals,
currently two 32-bit counters are used. For example:
0x81 "mySymbol" 0xFF "0-17".
* Well-known symbols use the 0x81 prefix but lack a unique suffix, so their
format is 0x81 <description> 0xFF.
* ES6 distinguishes between an undefined symbol description and an empty
string symbol description. This distinction is not currently visible via
Ecmascript bindings but may be visible in the future. Append an extra
0xFF to the unique suffix when the description is undefined, i.e.
0x81 0xFF <unique suffix> 0xFF.
These can be used whenever we're 100% certain that the value stack index
exists and the type matches expected type. When these are true, a
duk_hstring, duk_hbuffer, or duk_hobject pointer fetch can be inlined to
small code.
Saves a few hundred bytes of footprint:
* duk_dup_0() = duk_dup(ctx, 0), duk_dup_1() = duk_dup(ctx, 1), etc.
* duk_dup_m2() = duk_dup(ctx, -2), etc.
* duk_dup_m1() is not added, because duk_dup_top() is the same thing
Change handling of plain buffers so that they behave like ArrayBuffer
instances to Ecmascript code, with limitations such as not being
extensible and all properties being virtualized. This simplifies
Ecmascript code as plain buffers are just lightweight ArrayBuffers
(similarly to how lightfuncs appear as function objects). There are
a lot of small changes in how the built-in objects and methods, and
the C API deals with plain buffer values.
Also make a few small changes to plain pointer and lightfunc handling
to improve consistency with how plain buffers are now handled.
These don't play well with the API currently: the Duktape specific error
codes don't have Ecmascript Error class counterparts so they don't get
represented usefully as Ecmascript objects (e.g. AllocError is a plain
Error from Ecmascript point of view).
There's no real need for Duktape specific error code. Some of the codes
had become unused; a couple were used but Ecmascript standard types can
be used instead.
Also minor error message tweaking.
Improve readability by doing the following renames:
* duk_hcompiledfunction -> duk_hcompfunc
* duk_hnativefunction -> duk_hnatfunc
* duk_hbufferobject -> duk_hbufobj
Corresponding renames for all caps defines.
Eval code doesn't need an automatic prototype object, so avoid creating one.
This also avoids making the internal function which eval compiles to part of
a reference loop so that eval functions collect immediately.
* Use shared error macros and shared error handler to reduce the size of call
sites of common errors.
* Make zero argument DUK_ERROR() calls non-vararg calls to reduce call site
footprint. Non-vararg calls have smaller call sites and because there are
a lot of call sites, this turns out to be significant.
* Remove variadic macros from internal DUK_ERROR() macro set and add separate
macros for argument counts 0 to 4; this is more portable and requires less
conditional code, and works well when a non-vararg call is used for most
error call sites.
* Rework macro / function argument order for the error path, try to keep 'thr'
in the same argument slot to avoid unnecessary register moves.
* Pack linenumber and error code into a single 32-bit argument when possible,
removes one more constant load from the call site.
* Convert some internal errors to RangeErrors when the underlying cause is an
implementation limit (such as a compiler temp limit) rather than an actual
unexpected internal situation.
* Simplify and share a few error messages to reduce string count.
* Shorter setup for normalization input.
* Reuse the same stack buffer for normalization input and output. This works
because at every point in the algorithm: (1) the output is at most as long as
the input (never longer), and (2) the input is read one byte at a time and
the input (unlike the output) is never backtracked.
* Default module.{fileName,name} if not set instead of using explicit defaults.
Slightly smaller code footprint and less module properties for low memory
environments.
* Add module.fileName and initialize it to resolved module ID
* Add module.name and initialize it to the last component of the resolved
module ID
* Use module.fileName as the eval fileName which ends up in the wrapper
function's .fileName property
* Use module.name as the forced .name property of the wrapper function
which affects stack traces (but doesn't introduce an automatic binding
for the function name because the function is compiled as anonymous and
.name is only then overridden)
Also add .name for fresh require() functions created to improve stack traces
for errors in sub-modules.
GetLocals, GetVar, PutVar, and Eval will now accept an optional negative
callstack offset specifying the function activation to operate on. This
offset has the same semantics as the argument of Duktape.act(): -1 is
the topmost activation, -2 is its caller, etc.
'Leave as undefined' seems to be the best overall value stack initialization
policy. While 'leave as garbage' is marginally better in a few cases (mostly
when refcounting is disabled) it's probably not worth keeping two policies
around.
This allows an assignment to module.exports to be immediately
visible to sub-modules even when the current module is still
being loaded. This behavior matches Node.js.
Also changes modLoaded cache behavior when module loading fails: previously
a partial module would be cached, now the entry is removed so that it's
possible to attempt to reload the module. Exact behavior in this case is
underspecified in CommonJS; the revised behavior matches Node.js.
Add a C API binding for Object.defineProperty(): duk_def_prop().
In addition to Object.defineProperty() features, the API call provides a
"force" flag which allows properties to be added to non-extensible objects
and non-configurable properties to be changed (except virtual properties
which are immutable).
Because the name duk_def_prop() conflicts with internal calls, rename them
from duk_def_prop*() to duk_xdef_prop*(). This rename also makes it clearer
that the internal duk_xdef_prop*() calls have non-compliant, internal
semantics.
Also reimplement Object.defineProperty() and Object.defineProperties() (and
duk_def_prop()) so that they share the same internal helpers, and there is
no need for a temporary property descriptor object which is unnecessary churn.
Detailed changes:
- New helper to prepare (validate and normalize) property descriptors
- New helper to implement Object.defineProperty() internals, leaving
out validation of the property descriptor
- Reimplement Object.defineProperty() using the new helpers
- Reimplement Object.defineProperties() using the new helpers
- Reimplement duk_define_property() using the new helpers, so that a
temporary property descriptor object is no longer created
- Add support for "force" flag to Object.defineProperty()