You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1388 lines
38 KiB

/*
* Array built-ins
*
* Note that most Array built-ins are intentionally generic and work even
* when the 'this' binding is not an Array instance. To ensure this,
* Array algorithms do not assume "magical" Array behavior for the "length"
* property, for instance.
*
* XXX: the "Throw" flag should be set for (almost?) all [[Put]] and
* [[Delete]] operations, but it's currently false throughout. Go through
* all put/delete cases and check throw flag use. Need a new API primitive
* which allows throws flag to be specified.
*
* XXX: array lengths above 2G won't work reliably. There are many places
* where one needs a full signed 32-bit range ([-0xffffffff, 0xffffffff],
* i.e. -33- bits). Further, some valid array length values may be above
* 2**32-1, and this is not always correctly handled (duk_uint32_t is not enough).
*
* On using "put" vs. "def" prop
* =============================
*
* Code below must be careful to use the appropriate primitive as it matters
* for compliance. When using "put" there may be inherited properties in
* Array.prototype which cause side effects when values are written. When
* using "define" there are no such side effects, and many test262 test cases
* check for this (for real world code, such side effects are very rare).
* Both "put" and "define" are used in the E5.1 specification; as a rule,
* "put" is used when modifying an existing array (or a non-array 'this'
* binding) and "define" for setting values into a fresh result array.
*
* Also note that Array instance 'length' should be writable, but not
* enumerable and definitely not configurable: even Duktape code internally
* assumes that an Array instance will always have a 'length' property.
* Preventing deletion of the property is critical.
*/
#include "duk_internal.h"
/* Perform an intermediate join when this many elements have been pushed
* on the value stack.
*/
#define DUK__ARRAY_MID_JOIN_LIMIT 4096
/* Shared entry code for many Array built-ins. Note that length is left
* on stack (it could be popped, but that's not necessary).
*/
static duk_uint32_t duk__push_this_obj_len_u32(duk_context *ctx) {
duk_uint32_t len;
(void) duk_push_this_coercible_to_object(ctx);
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_LENGTH);
len = duk_to_uint32(ctx, -1);
/* -> [ ... ToObject(this) ToUint32(length) ] */
return len;
}
static duk_uint32_t duk__push_this_obj_len_u32_limited(duk_context *ctx) {
/* Range limited to [0, 0x7fffffff] range, i.e. range that can be
* represented with duk_int32_t. Use this when the method doesn't
* handle the full 32-bit unsigned range correctly.
*/
duk_uint32_t ret = duk__push_this_obj_len_u32(ctx);
if (DUK_UNLIKELY(ret >= 0x80000000UL)) {
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_INTERNAL_ERROR, "array length above 2G");
}
return ret;
}
/*
* Constructor
*/
duk_ret_t duk_bi_array_constructor(duk_context *ctx) {
duk_idx_t nargs;
duk_double_t d;
duk_uint32_t len;
duk_idx_t i;
nargs = duk_get_top(ctx);
duk_push_array(ctx);
if (nargs == 1 && duk_is_number(ctx, 0)) {
/* XXX: expensive check (also shared elsewhere - so add a shared internal API call?) */
d = duk_get_number(ctx, 0);
len = duk_to_uint32(ctx, 0);
if (((duk_double_t) len) != d) {
return DUK_RET_RANGE_ERROR;
}
/* XXX: if 'len' is low, may want to ensure array part is kept:
* the caller is likely to want a dense array.
*/
duk_dup(ctx, 0);
duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W); /* [ ToUint32(len) array ToUint32(len) ] -> [ ToUint32(len) array ] */
return 1;
}
/* XXX: optimize by creating array into correct size directly, and
* operating on the array part directly; values can be memcpy()'d from
* value stack directly as long as refcounts are increased.
*/
for (i = 0; i < nargs; i++) {
duk_dup(ctx, i);
duk_def_prop_index_wec(ctx, -2, (duk_uarridx_t) i);
}
duk_push_u32(ctx, (duk_uint32_t) nargs);
duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
return 1;
}
/*
* isArray()
*/
duk_ret_t duk_bi_array_constructor_is_array(duk_context *ctx) {
duk_hobject *h;
h = duk_get_hobject_with_class(ctx, 0, DUK_HOBJECT_CLASS_ARRAY);
duk_push_boolean(ctx, (h != NULL));
return 1;
}
/*
* toString()
*/
duk_ret_t duk_bi_array_prototype_to_string(duk_context *ctx) {
(void) duk_push_this_coercible_to_object(ctx);
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_JOIN);
/* [ ... this func ] */
if (!duk_is_callable(ctx, -1)) {
/* Fall back to the initial (original) Object.toString(). We don't
* currently have pointers to the built-in functions, only the top
* level global objects (like "Array") so this is now done in a bit
* of a hacky manner. It would be cleaner to push the (original)
* function and use duk_call_method().
*/
/* XXX: 'this' will be ToObject() coerced twice, which is incorrect
* but should have no visible side effects.
*/
DUK_DDD(DUK_DDDPRINT("this.join is not callable, fall back to (original) Object.toString"));
duk_set_top(ctx, 0);
return duk_bi_object_prototype_to_string(ctx); /* has access to 'this' binding */
}
/* [ ... this func ] */
duk_insert(ctx, -2);
/* [ ... func this ] */
DUK_DDD(DUK_DDDPRINT("calling: func=%!iT, this=%!iT",
(duk_tval *) duk_get_tval(ctx, -2),
(duk_tval *) duk_get_tval(ctx, -1)));
duk_call_method(ctx, 0);
return 1;
}
/*
* concat()
*/
duk_ret_t duk_bi_array_prototype_concat(duk_context *ctx) {
duk_idx_t i, n;
duk_uarridx_t idx, idx_last;
duk_uarridx_t j, len;
duk_hobject *h;
/* XXX: the insert here is a bit expensive if there are a lot of items.
* It could also be special cased in the outermost for loop quite easily
* (as the element is dup()'d anyway).
*/
(void) duk_push_this_coercible_to_object(ctx);
duk_insert(ctx, 0);
n = duk_get_top(ctx);
duk_push_array(ctx); /* -> [ ToObject(this) item1 ... itemN arr ] */
/* NOTE: The Array special behaviors are NOT invoked by duk_def_prop_index()
* (which differs from the official algorithm). If no error is thrown, this
* doesn't matter as the length is updated at the end. However, if an error
* is thrown, the length will be unset. That shouldn't matter because the
* caller won't get a reference to the intermediate value.
*/
idx = 0;
idx_last = 0;
for (i = 0; i < n; i++) {
DUK_ASSERT_TOP(ctx, n + 1);
/* [ ToObject(this) item1 ... itemN arr ] */
duk_dup(ctx, i);
h = duk_get_hobject_with_class(ctx, -1, DUK_HOBJECT_CLASS_ARRAY);
if (!h) {
duk_def_prop_index_wec(ctx, -2, idx++);
idx_last = idx;
continue;
}
/* [ ToObject(this) item1 ... itemN arr item(i) ] */
/* XXX: an array can have length higher than 32 bits; this is not handled
* correctly now.
*/
len = (duk_uarridx_t) duk_get_length(ctx, -1);
for (j = 0; j < len; j++) {
if (duk_get_prop_index(ctx, -1, j)) {
/* [ ToObject(this) item1 ... itemN arr item(i) item(i)[j] ] */
duk_def_prop_index_wec(ctx, -3, idx++);
idx_last = idx;
} else {
/* XXX: according to E5.1 Section 15.4.4.4 nonexistent trailing
* elements do not affect 'length' but test262 disagrees. Work
* as E5.1 mandates for now and don't touch idx_last.
*/
idx++;
duk_pop(ctx);
}
}
duk_pop(ctx);
}
duk_push_uarridx(ctx, idx_last);
duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
DUK_ASSERT_TOP(ctx, n + 1);
return 1;
}
/*
* join(), toLocaleString()
*
* Note: checking valstack is necessary, but only in the per-element loop.
*
* Note: the trivial approach of pushing all the elements on the value stack
* and then calling duk_join() fails when the array contains a large number
* of elements. This problem can't be offloaded to duk_join() because the
* elements to join must be handled here and have special handling. Current
* approach is to do intermediate joins with very large number of elements.
* There is no fancy handling; the prefix gets re-joined multiple times.
*/
duk_ret_t duk_bi_array_prototype_join_shared(duk_context *ctx) {
duk_uint32_t len, count;
duk_uint32_t idx;
duk_small_int_t to_locale_string = duk_get_magic(ctx);
duk_idx_t valstack_required;
/* For join(), nargs is 1. For toLocaleString(), nargs is 0 and
* setting the top essentially pushes an undefined to the stack,
* thus defaulting to a comma separator.
*/
duk_set_top(ctx, 1);
if (duk_is_undefined(ctx, 0)) {
duk_pop(ctx);
duk_push_hstring_stridx(ctx, DUK_STRIDX_COMMA);
} else {
duk_to_string(ctx, 0);
}
len = duk__push_this_obj_len_u32(ctx);
/* [ sep ToObject(this) len ] */
DUK_DDD(DUK_DDDPRINT("sep=%!T, this=%!T, len=%lu",
(duk_tval *) duk_get_tval(ctx, 0),
(duk_tval *) duk_get_tval(ctx, 1),
(unsigned long) len));
valstack_required = (len >= DUK__ARRAY_MID_JOIN_LIMIT ?
DUK__ARRAY_MID_JOIN_LIMIT : len) + 1;
duk_require_stack(ctx, valstack_required);
duk_dup(ctx, 0);
/* [ sep ToObject(this) len sep ] */
count = 0;
idx = 0;
for (;;) {
if (count >= DUK__ARRAY_MID_JOIN_LIMIT || /* intermediate join to avoid valstack overflow */
idx >= len) { /* end of loop (careful with len==0) */
/* [ sep ToObject(this) len sep str0 ... str(count-1) ] */
DUK_DDD(DUK_DDDPRINT("mid/final join, count=%ld, idx=%ld, len=%ld",
(long) count, (long) idx, (long) len));
duk_join(ctx, (duk_idx_t) count); /* -> [ sep ToObject(this) len str ] */
duk_dup(ctx, 0); /* -> [ sep ToObject(this) len str sep ] */
duk_insert(ctx, -2); /* -> [ sep ToObject(this) len sep str ] */
count = 1;
}
if (idx >= len) {
/* if true, the stack already contains the final result */
break;
}
duk_get_prop_index(ctx, 1, (duk_uarridx_t) idx);
if (duk_is_null_or_undefined(ctx, -1)) {
duk_pop(ctx);
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
} else {
if (to_locale_string) {
duk_to_object(ctx, -1);
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_TO_LOCALE_STRING);
duk_insert(ctx, -2); /* -> [ ... toLocaleString ToObject(val) ] */
duk_call_method(ctx, 0);
duk_to_string(ctx, -1);
} else {
duk_to_string(ctx, -1);
}
}
count++;
idx++;
}
/* [ sep ToObject(this) len sep result ] */
return 1;
}
/*
* pop(), push()
*/
duk_ret_t duk_bi_array_prototype_pop(duk_context *ctx) {
duk_uint32_t len;
duk_uint32_t idx;
DUK_ASSERT_TOP(ctx, 0);
len = duk__push_this_obj_len_u32(ctx);
if (len == 0) {
duk_push_int(ctx, 0);
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
return 0;
}
idx = len - 1;
duk_get_prop_index(ctx, 0, (duk_uarridx_t) idx);
duk_del_prop_index(ctx, 0, (duk_uarridx_t) idx);
duk_push_u32(ctx, idx);
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
return 1;
}
duk_ret_t duk_bi_array_prototype_push(duk_context *ctx) {
/* Note: 'this' is not necessarily an Array object. The push()
* algorithm is supposed to work for other kinds of objects too,
* so the algorithm has e.g. an explicit update for the 'length'
* property which is normally "magical" in arrays.
*/
duk_double_t len;
duk_idx_t i, n;
n = duk_get_top(ctx);
len = (duk_double_t) duk__push_this_obj_len_u32(ctx);
/* [ arg1 ... argN obj length ] */
/* Note: we keep track of length with a double instead of a 32-bit
* (unsigned) int because the length can go beyond 32 bits and the
* final length value is NOT wrapped to 32 bits on this call.
*/
for (i = 0; i < n; i++) {
duk_push_number(ctx, len);
duk_dup(ctx, i);
duk_put_prop(ctx, -4);
len += 1.0;
}
duk_push_number(ctx, len);
duk_dup_top(ctx);
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
/* [ arg1 ... argN obj length new_length ] */
return 1;
}
/*
* sort()
*
* Currently qsort with random pivot. This is now really, really slow,
* because there is no fast path for array parts.
*
* Signed indices are used because qsort() leaves and degenerate cases
* may use a negative offset.
*/
static duk_small_int_t duk__array_sort_compare(duk_context *ctx, duk_int_t idx1, duk_int_t idx2) {
duk_bool_t have1, have2;
duk_bool_t undef1, undef2;
duk_small_int_t ret;
duk_idx_t idx_obj = 1; /* fixed offsets in valstack */
duk_idx_t idx_fn = 0;
duk_hstring *h1, *h2;
/* Fast exit if indices are identical. This is valid for a non-existent property,
* for an undefined value, and almost always for ToString() coerced comparison of
* arbitrary values (corner cases where this is not the case include e.g. a an
* object with varying ToString() coercion).
*
* The specification does not prohibit "caching" of values read from the array, so
* assuming equality for comparing an index with itself falls into the category of
* "caching".
*
* Also, compareFn may be inconsistent, so skipping a call to compareFn here may
* have an effect on the final result. The specification does not require any
* specific behavior for inconsistent compare functions, so again, this fast path
* is OK.
*/
if (idx1 == idx2) {
DUK_DDD(DUK_DDDPRINT("duk__array_sort_compare: idx1=%ld, idx2=%ld -> indices identical, quick exit",
(long) idx1, (long) idx2));
return 0;
}
have1 = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) idx1);
have2 = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) idx2);
DUK_DDD(DUK_DDDPRINT("duk__array_sort_compare: idx1=%ld, idx2=%ld, have1=%ld, have2=%ld, val1=%!T, val2=%!T",
(long) idx1, (long) idx2, (long) have1, (long) have2,
(duk_tval *) duk_get_tval(ctx, -2), (duk_tval *) duk_get_tval(ctx, -1)));
if (have1) {
if (have2) {
;
} else {
ret = -1;
goto pop_ret;
}
} else {
if (have2) {
ret = 1;
goto pop_ret;
} else {
ret = 0;
goto pop_ret;
}
}
undef1 = duk_is_undefined(ctx, -2);
undef2 = duk_is_undefined(ctx, -1);
if (undef1) {
if (undef2) {
ret = 0;
goto pop_ret;
} else {
ret = 1;
goto pop_ret;
}
} else {
if (undef2) {
ret = -1;
goto pop_ret;
} else {
;
}
}
if (!duk_is_undefined(ctx, idx_fn)) {
duk_double_t d;
/* no need to check callable; duk_call() will do that */
duk_dup(ctx, idx_fn); /* -> [ ... x y fn ] */
duk_insert(ctx, -3); /* -> [ ... fn x y ] */
duk_call(ctx, 2); /* -> [ ... res ] */
/* The specification is a bit vague what to do if the return
* value is not a number. Other implementations seem to
* tolerate non-numbers but e.g. V8 won't apparently do a
* ToNumber().
*/
/* XXX: best behavior for real world compatibility? */
d = duk_to_number(ctx, -1);
if (d < 0.0) {
ret = -1;
} else if (d > 0.0) {
ret = 1;
} else {
ret = 0;
}
duk_pop(ctx);
DUK_DDD(DUK_DDDPRINT("-> result %ld (from comparefn, after coercion)", (long) ret));
return ret;
}
/* string compare is the default (a bit oddly) */
h1 = duk_to_hstring(ctx, -2);
h2 = duk_to_hstring(ctx, -1);
DUK_ASSERT(h1 != NULL);
DUK_ASSERT(h2 != NULL);
ret = duk_js_string_compare(h1, h2); /* retval is directly usable */
goto pop_ret;
pop_ret:
duk_pop_2(ctx);
DUK_DDD(DUK_DDDPRINT("-> result %ld", (long) ret));
return ret;
}
static void duk__array_sort_swap(duk_context *ctx, duk_int_t l, duk_int_t r) {
duk_bool_t have_l, have_r;
duk_idx_t idx_obj = 1; /* fixed offset in valstack */
if (l == r) {
return;
}
/* swap elements; deal with non-existent elements correctly */
have_l = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
have_r = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
if (have_r) {
/* right exists, [[Put]] regardless whether or not left exists */
duk_put_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
} else {
duk_del_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
duk_pop(ctx);
}
if (have_l) {
duk_put_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
} else {
duk_del_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
duk_pop(ctx);
}
}
#if defined(DUK_USE_DDDPRINT)
/* Debug print which visualizes the qsort partitioning process. */
static void duk__debuglog_qsort_state(duk_context *ctx, duk_int_t lo, duk_int_t hi, duk_int_t pivot) {
char buf[4096];
char *ptr = buf;
duk_int_t i, n;
n = (duk_int_t) duk_get_length(ctx, 1);
if (n > 4000) {
n = 4000;
}
*ptr++ = '[';
for (i = 0; i < n; i++) {
if (i == pivot) {
*ptr++ = '|';
} else if (i == lo) {
*ptr++ = '<';
} else if (i == hi) {
*ptr++ = '>';
} else if (i >= lo && i <= hi) {
*ptr++ = '-';
} else {
*ptr++ = ' ';
}
}
*ptr++ = ']';
*ptr++ = '\0';
DUK_DDD(DUK_DDDPRINT("%s (lo=%ld, hi=%ld, pivot=%ld)",
(const char *) buf, (long) lo, (long) hi, (long) pivot));
}
#endif
static void duk__array_qsort(duk_context *ctx, duk_int_t lo, duk_int_t hi) {
duk_hthread *thr = (duk_hthread *) ctx;
duk_int_t p, l, r;
/* The lo/hi indices may be crossed and hi < 0 is possible at entry. */
DUK_DDD(DUK_DDDPRINT("duk__array_qsort: lo=%ld, hi=%ld, obj=%!T",
(long) lo, (long) hi, (duk_tval *) duk_get_tval(ctx, 1)));
DUK_ASSERT_TOP(ctx, 3);
/* In some cases it may be that lo > hi, or hi < 0; these
* degenerate cases happen e.g. for empty arrays, and in
* recursion leaves.
*/
/* trivial cases */
if (hi - lo < 1) {
DUK_DDD(DUK_DDDPRINT("degenerate case, return immediately"));
return;
}
DUK_ASSERT(hi > lo);
DUK_ASSERT(hi - lo + 1 >= 2);
/* randomized pivot selection */
p = lo + (duk_util_tinyrandom_get_bits(thr, 30) % (hi - lo + 1)); /* rnd in [lo,hi] */
DUK_ASSERT(p >= lo && p <= hi);
DUK_DDD(DUK_DDDPRINT("lo=%ld, hi=%ld, chose pivot p=%ld",
(long) lo, (long) hi, (long) p));
/* move pivot out of the way */
duk__array_sort_swap(ctx, p, lo);
p = lo;
DUK_DDD(DUK_DDDPRINT("pivot moved out of the way: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
l = lo + 1;
r = hi;
for (;;) {
/* find elements to swap */
for (;;) {
DUK_DDD(DUK_DDDPRINT("left scan: l=%ld, r=%ld, p=%ld",
(long) l, (long) r, (long) p));
if (l >= hi) {
break;
}
if (duk__array_sort_compare(ctx, l, p) >= 0) { /* !(l < p) */
break;
}
l++;
}
for (;;) {
DUK_DDD(DUK_DDDPRINT("right scan: l=%ld, r=%ld, p=%ld",
(long) l, (long) r, (long) p));
if (r <= lo) {
break;
}
if (duk__array_sort_compare(ctx, p, r) >= 0) { /* !(p < r) */
break;
}
r--;
}
if (l >= r) {
goto done;
}
DUK_ASSERT(l < r);
DUK_DDD(DUK_DDDPRINT("swap %ld and %ld", (long) l, (long) r));
duk__array_sort_swap(ctx, l, r);
DUK_DDD(DUK_DDDPRINT("after swap: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
l++;
r--;
}
done:
/* Note that 'l' and 'r' may cross, i.e. r < l */
DUK_ASSERT(l >= lo && l <= hi);
DUK_ASSERT(r >= lo && r <= hi);
/* XXX: there's no explicit recursion bound here now. For the average
* qsort recursion depth O(log n) that's not really necessary: e.g. for
* 2**32 recursion depth would be about 32 which is OK. However, qsort
* worst case recursion depth is O(n) which may be a problem.
*/
/* move pivot to its final place */
DUK_DDD(DUK_DDDPRINT("before final pivot swap: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
duk__array_sort_swap(ctx, lo, r);
#if defined(DUK_USE_DDDPRINT)
duk__debuglog_qsort_state(ctx, lo, hi, r);
#endif
DUK_DDD(DUK_DDDPRINT("recurse: pivot=%ld, obj=%!T", (long) r, (duk_tval *) duk_get_tval(ctx, 1)));
duk__array_qsort(ctx, lo, r - 1);
duk__array_qsort(ctx, r + 1, hi);
}
duk_ret_t duk_bi_array_prototype_sort(duk_context *ctx) {
duk_uint32_t len;
/* XXX: len >= 0x80000000 won't work below because a signed type
* is needed by qsort.
*/
len = duk__push_this_obj_len_u32_limited(ctx);
/* stack[0] = compareFn
* stack[1] = ToObject(this)
* stack[2] = ToUint32(length)
*/
if (len > 0) {
/* avoid degenerate cases, so that (len - 1) won't underflow */
duk__array_qsort(ctx, (duk_int_t) 0, (duk_int_t) (len - 1));
}
DUK_ASSERT_TOP(ctx, 3);
duk_pop(ctx);
return 1; /* return ToObject(this) */
}
/*
* splice()
*/
/* XXX: this compiles to over 500 bytes now, even without special handling
* for an array part. Uses signed ints so does not handle full array range correctly.
*/
/* XXX: can shift() / unshift() use the same helper?
* shift() is (close to?) <--> splice(0, 1)
* unshift is (close to?) <--> splice(0, 0, [items])?
*/
duk_ret_t duk_bi_array_prototype_splice(duk_context *ctx) {
duk_idx_t nargs;
duk_uint32_t len;
duk_bool_t have_delcount;
duk_int_t item_count;
duk_int_t act_start;
duk_int_t del_count;
duk_int_t i, n;
DUK_UNREF(have_delcount);
nargs = duk_get_top(ctx);
if (nargs < 2) {
duk_set_top(ctx, 2);
nargs = 2;
have_delcount = 0;
} else {
have_delcount = 1;
}
/* XXX: len >= 0x80000000 won't work below because we need to be
* able to represent -len.
*/
len = duk__push_this_obj_len_u32_limited(ctx);
act_start = duk_to_int_clamped(ctx, 0, -((duk_int_t) len), (duk_int_t) len);
if (act_start < 0) {
act_start = len + act_start;
}
DUK_ASSERT(act_start >= 0 && act_start <= (duk_int_t) len);
#ifdef DUK_USE_NONSTD_ARRAY_SPLICE_DELCOUNT
if (have_delcount) {
#endif
del_count = duk_to_int_clamped(ctx, 1, 0, len - act_start);
#ifdef DUK_USE_NONSTD_ARRAY_SPLICE_DELCOUNT
} else {
/* E5.1 standard behavior when deleteCount is not given would be
* to treat it just like if 'undefined' was given, which coerces
* ultimately to 0. Real world behavior is to splice to the end
* of array, see test-bi-array-proto-splice-no-delcount.js.
*/
del_count = len - act_start;
}
#endif
DUK_ASSERT(del_count >= 0 && del_count <= (duk_int_t) len - act_start);
DUK_ASSERT(del_count + act_start <= (duk_int_t) len);
duk_push_array(ctx);
/* stack[0] = start
* stack[1] = deleteCount
* stack[2...nargs-1] = items
* stack[nargs] = ToObject(this) -3
* stack[nargs+1] = ToUint32(length) -2
* stack[nargs+2] = result array -1
*/
DUK_ASSERT_TOP(ctx, nargs + 3);
/* Step 9: copy elements-to-be-deleted into the result array */
for (i = 0; i < del_count; i++) {
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (act_start + i))) {
duk_def_prop_index_wec(ctx, -2, i); /* throw flag irrelevant (false in std alg) */
} else {
duk_pop(ctx);
}
}
duk_push_u32(ctx, (duk_uint32_t) del_count);
duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
/* Steps 12 and 13: reorganize elements to make room for itemCount elements */
DUK_ASSERT(nargs >= 2);
item_count = (duk_int_t) (nargs - 2);
if (item_count < del_count) {
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 1
* -> [ A B F G H ] (conceptual intermediate step)
* -> [ A B . F G H ] (placeholder marked)
* [ A B C F G H ] (actual result at this point, C will be replaced)
*/
DUK_ASSERT_TOP(ctx, nargs + 3);
n = len - del_count;
for (i = act_start; i < n; i++) {
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (i + del_count))) {
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (i + item_count));
} else {
duk_pop(ctx);
duk_del_prop_index(ctx, -3, (duk_uarridx_t) (i + item_count));
}
}
DUK_ASSERT_TOP(ctx, nargs + 3);
/* loop iterator init and limit changed from standard algorithm */
n = len - del_count + item_count;
for (i = len - 1; i >= n; i--) {
duk_del_prop_index(ctx, -3, (duk_uarridx_t) i);
}
DUK_ASSERT_TOP(ctx, nargs + 3);
} else if (item_count > del_count) {
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 4
* -> [ A B F G H ] (conceptual intermediate step)
* -> [ A B . . . . F G H ] (placeholder marked)
* [ A B C D E F F G H ] (actual result at this point)
*/
DUK_ASSERT_TOP(ctx, nargs + 3);
/* loop iterator init and limit changed from standard algorithm */
for (i = len - del_count - 1; i >= act_start; i--) {
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (i + del_count))) {
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (i + item_count));
} else {
duk_pop(ctx);
duk_del_prop_index(ctx, -3, (duk_uarridx_t) (i + item_count));
}
}
DUK_ASSERT_TOP(ctx, nargs + 3);
} else {
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 3
* -> [ A B F G H ] (conceptual intermediate step)
* -> [ A B . . . F G H ] (placeholder marked)
* [ A B C D E F G H ] (actual result at this point)
*/
}
DUK_ASSERT_TOP(ctx, nargs + 3);
/* Step 15: insert itemCount elements into the hole made above */
for (i = 0; i < item_count; i++) {
duk_dup(ctx, i + 2); /* args start at index 2 */
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (act_start + i));
}
/* Step 16: update length; note that the final length may be above 32 bit range */
duk_push_number(ctx, ((duk_double_t) len) - ((duk_double_t) del_count) + ((duk_double_t) item_count));
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
/* result array is already at the top of stack */
DUK_ASSERT_TOP(ctx, nargs + 3);
return 1;
}
/*
* reverse()
*/
duk_ret_t duk_bi_array_prototype_reverse(duk_context *ctx) {
duk_uint32_t len;
duk_uint32_t middle;
duk_uint32_t lower, upper;
duk_bool_t have_lower, have_upper;
len = duk__push_this_obj_len_u32(ctx);
middle = len / 2;
/* If len <= 1, middle will be 0 and for-loop bails out
* immediately (0 < 0 -> false).
*/
for (lower = 0; lower < middle; lower++) {
DUK_ASSERT(len >= 2);
DUK_ASSERT_TOP(ctx, 2);
DUK_ASSERT(len >= lower + 1);
upper = len - lower - 1;
have_lower = duk_get_prop_index(ctx, -2, (duk_uarridx_t) lower);
have_upper = duk_get_prop_index(ctx, -3, (duk_uarridx_t) upper);
/* [ ToObject(this) ToUint32(length) lowerValue upperValue ] */
if (have_upper) {
duk_put_prop_index(ctx, -4, (duk_uarridx_t) lower);
} else {
duk_del_prop_index(ctx, -4, (duk_uarridx_t) lower);
duk_pop(ctx);
}
if (have_lower) {
duk_put_prop_index(ctx, -3, (duk_uarridx_t) upper);
} else {
duk_del_prop_index(ctx, -3, (duk_uarridx_t) upper);
duk_pop(ctx);
}
DUK_ASSERT_TOP(ctx, 2);
}
DUK_ASSERT_TOP(ctx, 2);
duk_pop(ctx); /* -> [ ToObject(this) ] */
return 1;
}
/*
* slice()
*/
duk_ret_t duk_bi_array_prototype_slice(duk_context *ctx) {
duk_uint32_t len;
duk_int_t start, end;
duk_int_t i;
duk_uarridx_t idx;
duk_uint32_t res_length = 0;
/* XXX: len >= 0x80000000 won't work below because we need to be
* able to represent -len.
*/
len = duk__push_this_obj_len_u32_limited(ctx);
duk_push_array(ctx);
/* stack[0] = start
* stack[1] = end
* stack[2] = ToObject(this)
* stack[3] = ToUint32(length)
* stack[4] = result array
*/
start = duk_to_int_clamped(ctx, 0, -((duk_int_t) len), (duk_int_t) len);
if (start < 0) {
start = len + start;
}
/* XXX: could duk_is_undefined() provide defaulting undefined to 'len'
* (the upper limit)?
*/
if (duk_is_undefined(ctx, 1)) {
end = len;
} else {
end = duk_to_int_clamped(ctx, 1, -((duk_int_t) len), (duk_int_t) len);
if (end < 0) {
end = len + end;
}
}
DUK_ASSERT(start >= 0 && (duk_uint32_t) start <= len);
DUK_ASSERT(end >= 0 && (duk_uint32_t) end <= len);
idx = 0;
for (i = start; i < end; i++) {
DUK_ASSERT_TOP(ctx, 5);
if (duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
duk_def_prop_index_wec(ctx, 4, idx);
res_length = idx + 1;
} else {
duk_pop(ctx);
}
idx++;
DUK_ASSERT_TOP(ctx, 5);
}
duk_push_u32(ctx, res_length);
duk_def_prop_stridx(ctx, 4, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
DUK_ASSERT_TOP(ctx, 5);
return 1;
}
/*
* shift()
*/
duk_ret_t duk_bi_array_prototype_shift(duk_context *ctx) {
duk_uint32_t len;
duk_uint32_t i;
len = duk__push_this_obj_len_u32(ctx);
if (len == 0) {
duk_push_int(ctx, 0);
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
return 0;
}
duk_get_prop_index(ctx, 0, 0);
/* stack[0] = object (this)
* stack[1] = ToUint32(length)
* stack[2] = elem at index 0 (retval)
*/
for (i = 1; i < len; i++) {
DUK_ASSERT_TOP(ctx, 3);
if (duk_get_prop_index(ctx, 0, (duk_uarridx_t) i)) {
/* fromPresent = true */
duk_put_prop_index(ctx, 0, (duk_uarridx_t) (i - 1));
} else {
/* fromPresent = false */
duk_del_prop_index(ctx, 0, (duk_uarridx_t) (i - 1));
duk_pop(ctx);
}
}
duk_del_prop_index(ctx, 0, (duk_uarridx_t) (len - 1));
duk_push_u32(ctx, (duk_uint32_t) (len - 1));
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
DUK_ASSERT_TOP(ctx, 3);
return 1;
}
/*
* unshift()
*/
duk_ret_t duk_bi_array_prototype_unshift(duk_context *ctx) {
duk_idx_t nargs;
duk_uint32_t len;
duk_uint32_t i;
duk_double_t final_len;
nargs = duk_get_top(ctx);
len = duk__push_this_obj_len_u32(ctx);
/* stack[0...nargs-1] = unshift args (vararg)
* stack[nargs] = ToObject(this)
* stack[nargs+1] = ToUint32(length)
*/
DUK_ASSERT_TOP(ctx, nargs + 2);
/* Note: unshift() may operate on indices above unsigned 32-bit range
* and the final length may be >= 2**32. Hence we use 'double' vars
* here, when appropriate.
*/
i = len;
while (i > 0) {
DUK_ASSERT_TOP(ctx, nargs + 2);
i--;
/* k+argCount-1; note that may be above 32-bit range */
duk_push_number(ctx, ((duk_double_t) i) + ((duk_double_t) nargs));
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) i)) {
/* fromPresent = true */
/* [ ... ToObject(this) ToUint32(length) to val ] */
duk_put_prop(ctx, -4); /* -> [ ... ToObject(this) ToUint32(length) ] */
} else {
/* fromPresent = false */
/* [ ... ToObject(this) ToUint32(length) to val ] */
duk_pop(ctx);
duk_del_prop(ctx, -3); /* -> [ ... ToObject(this) ToUint32(length) ] */
}
DUK_ASSERT_TOP(ctx, nargs + 2);
}
for (i = 0; i < (duk_uint32_t) nargs; i++) {
DUK_ASSERT_TOP(ctx, nargs + 2);
duk_dup(ctx, i); /* -> [ ... ToObject(this) ToUint32(length) arg[i] ] */
duk_put_prop_index(ctx, -3, (duk_uarridx_t) i);
DUK_ASSERT_TOP(ctx, nargs + 2);
}
DUK_ASSERT_TOP(ctx, nargs + 2);
final_len = ((duk_double_t) len) + ((duk_double_t) nargs);
duk_push_number(ctx, final_len);
duk_dup_top(ctx); /* -> [ ... ToObject(this) ToUint32(length) final_len final_len ] */
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
return 1;
}
/*
* indexOf(), lastIndexOf()
*/
duk_ret_t duk_bi_array_prototype_indexof_shared(duk_context *ctx) {
duk_idx_t nargs;
duk_int_t i, len;
duk_int_t from_index;
duk_small_int_t idx_step = duk_get_magic(ctx); /* idx_step is +1 for indexOf, -1 for lastIndexOf */
/* lastIndexOf() needs to be a vararg function because we must distinguish
* between an undefined fromIndex and a "not given" fromIndex; indexOf() is
* made vararg for symmetry although it doesn't strictly need to be.
*/
nargs = duk_get_top(ctx);
duk_set_top(ctx, 2);
/* XXX: must be able to represent -len */
len = (duk_int_t) duk__push_this_obj_len_u32_limited(ctx);
if (len == 0) {
goto not_found;
}
/* Index clamping is a bit tricky, we must ensure that we'll only iterate
* through elements that exist and that the specific requirements from E5.1
* Sections 15.4.4.14 and 15.4.4.15 are fulfilled; especially:
*
* - indexOf: clamp to [-len,len], negative handling -> [0,len],
* if clamped result is len, for-loop bails out immediately
*
* - lastIndexOf: clamp to [-len-1, len-1], negative handling -> [-1, len-1],
* if clamped result is -1, for-loop bails out immediately
*
* If fromIndex is not given, ToInteger(undefined) = 0, which is correct
* for indexOf() but incorrect for lastIndexOf(). Hence special handling,
* and why lastIndexOf() needs to be a vararg function.
*/
if (nargs >= 2) {
/* indexOf: clamp fromIndex to [-len, len]
* (if fromIndex == len, for-loop terminates directly)
*
* lastIndexOf: clamp fromIndex to [-len - 1, len - 1]
* (if clamped to -len-1 -> fromIndex becomes -1, terminates for-loop directly)
*/
from_index = duk_to_int_clamped(ctx,
1,
(idx_step > 0 ? -len : -len - 1),
(idx_step > 0 ? len : len - 1));
if (from_index < 0) {
/* for lastIndexOf, result may be -1 (mark immediate termination) */
from_index = len + from_index;
}
} else {
/* for indexOf, ToInteger(undefined) would be 0, i.e. correct, but
* handle both indexOf and lastIndexOf specially here.
*/
if (idx_step > 0) {
from_index = 0;
} else {
from_index = len - 1;
}
}
/* stack[0] = searchElement
* stack[1] = fromIndex
* stack[2] = object
* stack[3] = length (not needed, but not popped above)
*/
for (i = from_index; i >= 0 && i < len; i += idx_step) {
DUK_ASSERT_TOP(ctx, 4);
if (duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
DUK_ASSERT_TOP(ctx, 5);
if (duk_strict_equals(ctx, 0, 4)) {
duk_push_int(ctx, i);
return 1;
}
}
duk_pop(ctx);
}
not_found:
duk_push_int(ctx, -1);
return 1;
}
/*
* every(), some(), forEach(), map(), filter()
*/
#define DUK__ITER_EVERY 0
#define DUK__ITER_SOME 1
#define DUK__ITER_FOREACH 2
#define DUK__ITER_MAP 3
#define DUK__ITER_FILTER 4
/* XXX: This helper is a bit awkward because the handling for the different iteration
* callers is quite different. This now compiles to a bit less than 500 bytes, so with
* 5 callers the net result is about 100 bytes / caller.
*/
duk_ret_t duk_bi_array_prototype_iter_shared(duk_context *ctx) {
duk_uint32_t len;
duk_uint32_t i;
duk_uarridx_t k;
duk_bool_t bval;
duk_small_int_t iter_type = duk_get_magic(ctx);
duk_uint32_t res_length = 0;
/* each call this helper serves has nargs==2 */
DUK_ASSERT_TOP(ctx, 2);
len = duk__push_this_obj_len_u32(ctx);
if (!duk_is_callable(ctx, 0)) {
goto type_error;
}
/* if thisArg not supplied, behave as if undefined was supplied */
if (iter_type == DUK__ITER_MAP || iter_type == DUK__ITER_FILTER) {
duk_push_array(ctx);
} else {
duk_push_undefined(ctx);
}
/* stack[0] = callback
* stack[1] = thisArg
* stack[2] = object
* stack[3] = ToUint32(length) (unused, but avoid unnecessary pop)
* stack[4] = result array (or undefined)
*/
k = 0; /* result index for filter() */
for (i = 0; i < len; i++) {
DUK_ASSERT_TOP(ctx, 5);
if (!duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
duk_pop(ctx);
continue;
}
/* The original value needs to be preserved for filter(), hence
* this funny order. We can't re-get the value because of side
* effects.
*/
duk_dup(ctx, 0);
duk_dup(ctx, 1);
duk_dup(ctx, -3);
duk_push_u32(ctx, i);
duk_dup(ctx, 2); /* [ ... val callback thisArg val i obj ] */
duk_call_method(ctx, 3); /* -> [ ... val retval ] */
switch (iter_type) {
case DUK__ITER_EVERY:
bval = duk_to_boolean(ctx, -1);
if (!bval) {
/* stack top contains 'false' */
return 1;
}
break;
case DUK__ITER_SOME:
bval = duk_to_boolean(ctx, -1);
if (bval) {
/* stack top contains 'true' */
return 1;
}
break;
case DUK__ITER_FOREACH:
/* nop */
break;
case DUK__ITER_MAP:
duk_dup(ctx, -1);
duk_def_prop_index_wec(ctx, 4, (duk_uarridx_t) i); /* retval to result[i] */
res_length = i + 1;
break;
case DUK__ITER_FILTER:
bval = duk_to_boolean(ctx, -1);
if (bval) {
duk_dup(ctx, -2); /* orig value */
duk_def_prop_index_wec(ctx, 4, (duk_uarridx_t) k);
k++;
res_length = k;
}
break;
default:
DUK_UNREACHABLE();
break;
}
duk_pop_2(ctx);
DUK_ASSERT_TOP(ctx, 5);
}
switch (iter_type) {
case DUK__ITER_EVERY:
duk_push_true(ctx);
break;
case DUK__ITER_SOME:
duk_push_false(ctx);
break;
case DUK__ITER_FOREACH:
duk_push_undefined(ctx);
break;
case DUK__ITER_MAP:
case DUK__ITER_FILTER:
DUK_ASSERT_TOP(ctx, 5);
DUK_ASSERT(duk_is_array(ctx, -1)); /* topmost element is the result array already */
duk_push_u32(ctx, res_length);
duk_def_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
break;
default:
DUK_UNREACHABLE();
break;
}
return 1;
type_error:
return DUK_RET_TYPE_ERROR;
}
/*
* reduce(), reduceRight()
*/
duk_ret_t duk_bi_array_prototype_reduce_shared(duk_context *ctx) {
duk_idx_t nargs;
duk_bool_t have_acc;
duk_uint32_t i, len;
duk_small_int_t idx_step = duk_get_magic(ctx); /* idx_step is +1 for reduce, -1 for reduceRight */
/* We're a varargs function because we need to detect whether
* initialValue was given or not.
*/
nargs = duk_get_top(ctx);
DUK_DDD(DUK_DDDPRINT("nargs=%ld", (long) nargs));
duk_set_top(ctx, 2);
len = duk__push_this_obj_len_u32(ctx);
if (!duk_is_callable(ctx, 0)) {
goto type_error;
}
/* stack[0] = callback fn
* stack[1] = initialValue
* stack[2] = object (coerced this)
* stack[3] = length (not needed, but not popped above)
* stack[4] = accumulator
*/
have_acc = 0;
if (nargs >= 2) {
duk_dup(ctx, 1);
have_acc = 1;
}
DUK_DDD(DUK_DDDPRINT("have_acc=%ld, acc=%!T",
(long) have_acc, (duk_tval *) duk_get_tval(ctx, 3)));
/* For len == 0, i is initialized to len - 1 which underflows.
* The condition (i < len) will then exit the for-loop on the
* first round which is correct. Similarly, loop termination
* happens by i underflowing.
*/
for (i = (idx_step >= 0 ? 0 : len - 1);
i < len; /* i >= 0 would always be true */
i += idx_step) {
DUK_DDD(DUK_DDDPRINT("i=%ld, len=%ld, have_acc=%ld, top=%ld, acc=%!T",
(long) i, (long) len, (long) have_acc,
(long) duk_get_top(ctx),
(duk_tval *) duk_get_tval(ctx, 4)));
DUK_ASSERT((have_acc && duk_get_top(ctx) == 5) ||
(!have_acc && duk_get_top(ctx) == 4));
if (!duk_has_prop_index(ctx, 2, (duk_uarridx_t) i)) {
continue;
}
if (!have_acc) {
DUK_ASSERT_TOP(ctx, 4);
duk_get_prop_index(ctx, 2, (duk_uarridx_t) i);
have_acc = 1;
DUK_ASSERT_TOP(ctx, 5);
} else {
DUK_ASSERT_TOP(ctx, 5);
duk_dup(ctx, 0);
duk_dup(ctx, 4);
duk_get_prop_index(ctx, 2, (duk_uarridx_t) i);
duk_push_u32(ctx, i);
duk_dup(ctx, 2);
DUK_DDD(DUK_DDDPRINT("calling reduce function: func=%!T, prev=%!T, curr=%!T, idx=%!T, obj=%!T",
(duk_tval *) duk_get_tval(ctx, -5), (duk_tval *) duk_get_tval(ctx, -4),
(duk_tval *) duk_get_tval(ctx, -3), (duk_tval *) duk_get_tval(ctx, -2),
(duk_tval *) duk_get_tval(ctx, -1)));
duk_call(ctx, 4);
DUK_DDD(DUK_DDDPRINT("-> result: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
duk_replace(ctx, 4);
DUK_ASSERT_TOP(ctx, 5);
}
}
if (!have_acc) {
goto type_error;
}
DUK_ASSERT_TOP(ctx, 5);
return 1;
type_error:
return DUK_RET_TYPE_ERROR;
}