You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1064 lines
26 KiB

/*
* jit-compile.c - Function compilation.
*
* Copyright (C) 2004, 2006-2008 Southern Storm Software, Pty Ltd.
* Copyright (C) 2012 Aleksey Demakov
*
* This file is part of the libjit library.
*
* The libjit library is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 2.1 of
* the License, or (at your option) any later version.
*
* The libjit library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with the libjit library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "jit-internal.h"
#include "jit-rules.h"
#include "jit-reg-alloc.h"
#include "jit-setjmp.h"
#ifdef _JIT_COMPILE_DEBUG
# include <jit/jit-dump.h>
# include <stdio.h>
#endif
/*
* Misc data needed for compilation
*/
typedef struct
{
jit_function_t func;
int memory_locked;
int memory_started;
int restart;
int page_factor;
struct jit_gencode gen;
} _jit_compile_t;
#define _JIT_RESULT_TO_OBJECT(x) ((void *) ((jit_nint) (x) - JIT_RESULT_OK))
#define _JIT_RESULT_FROM_OBJECT(x) ((jit_nint) ((void *) (x)) + JIT_RESULT_OK)
/*
* This exception handler overrides a user-defined handler during compilation.
*/
static void *
internal_exception_handler(int exception_type)
{
return _JIT_RESULT_TO_OBJECT(exception_type);
}
/*
* Optimize a function.
*/
static void
optimize(jit_function_t func)
{
if(func->is_optimized || func->optimization_level == JIT_OPTLEVEL_NONE)
{
/* The function is already optimized or does not need optimization */
return;
}
/* Build control flow graph */
_jit_block_build_cfg(func);
/* Eliminate useless control flow */
_jit_block_clean_cfg(func);
/* Optimization is done */
func->is_optimized = 1;
}
/*@
* @deftypefun int jit_optimize (jit_function_t @var{func})
* Optimize a function by analyzing and transforming its intermediate
* representation. If the function was already compiled or optimized,
* then do nothing.
*
* Returns @code{JIT_RESUlT_OK} on success, otherwise it might return
* @code{JIT_RESULT_OUT_OF_MEMORY}, @code{JIT_RESULT_COMPILE_ERROR} or
* possibly some other more specific @code{JIT_RESULT_} code.
*
* Normally this function should not be used because @code{jit_compile}
* performs all the optimization anyway. However it might be useful for
* debugging to verify the effect of the @code{libjit} code optimization.
* This might be done, for instance, by calling @code{jit_dump_function}
* before and after @code{jit_optimize}.
* @end deftypefun
@*/
int
jit_optimize(jit_function_t func)
{
jit_jmp_buf jbuf;
jit_exception_func handler;
/* Bail out on invalid parameter */
if(!func)
{
return JIT_RESULT_NULL_FUNCTION;
}
/* Bail out if there is nothing to do here */
if(!func->builder)
{
if(func->is_compiled)
{
/* The function is already compiled and we can't optimize it */
return JIT_RESULT_OK;
}
else
{
/* We don't have anything to optimize at all */
return JIT_RESULT_NULL_FUNCTION;
}
}
/* Override user's exception handler */
handler = jit_exception_set_handler(internal_exception_handler);
/* Establish a "setjmp" point here so that we can unwind the
stack to this point when an exception occurs and then prevent
the exception from propagating further up the stack */
_jit_unwind_push_setjmp(&jbuf);
if(setjmp(jbuf.buf))
{
_jit_unwind_pop_setjmp();
jit_exception_set_handler(handler);
return _JIT_RESULT_FROM_OBJECT(jit_exception_get_last_and_clear());
}
/* Perform the optimizations */
optimize(func);
/* Restore the "setjmp" contexts and exit */
_jit_unwind_pop_setjmp();
jit_exception_set_handler(handler);
return JIT_RESULT_OK;
}
/*
* Mark the current position with a bytecode offset value.
*/
void
mark_offset(jit_gencode_t gen, jit_function_t func, unsigned long offset)
{
unsigned long native_offset = gen->ptr - gen->mem_start;
if(!_jit_varint_encode_uint(&gen->offset_encoder, (jit_uint) offset))
{
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
if(!_jit_varint_encode_uint(&gen->offset_encoder, (jit_uint) native_offset))
{
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
}
/*
* Compile a single basic block within a function.
*/
static void
compile_block(jit_gencode_t gen, jit_function_t func, jit_block_t block)
{
jit_insn_iter_t iter;
jit_insn_t insn;
#ifdef _JIT_COMPILE_DEBUG
printf("Block #%d: %d\n\n", func->builder->block_count++, block->label);
#endif
/* Iterate over all blocks in the function */
jit_insn_iter_init(&iter, block);
while((insn = jit_insn_iter_next(&iter)) != 0)
{
#ifdef _JIT_COMPILE_DEBUG
unsigned char *p1, *p2;
p1 = gen->ptr;
printf("Insn #%d: ", func->builder->insn_count++);
jit_dump_insn(stdout, func, insn);
printf("\nStart of binary code: 0x%08x\n", p1);
#endif
switch(insn->opcode)
{
case JIT_OP_NOP:
/* Ignore NOP's */
break;
case JIT_OP_CHECK_NULL:
/* Determine if we can optimize the null check away */
if(!_jit_insn_check_is_redundant(&iter))
{
_jit_gen_insn(gen, func, block, insn);
}
break;
#ifndef JIT_BACKEND_INTERP
case JIT_OP_CALL:
case JIT_OP_CALL_TAIL:
case JIT_OP_CALL_INDIRECT:
case JIT_OP_CALL_INDIRECT_TAIL:
case JIT_OP_CALL_VTABLE_PTR:
case JIT_OP_CALL_VTABLE_PTR_TAIL:
case JIT_OP_CALL_EXTERNAL:
case JIT_OP_CALL_EXTERNAL_TAIL:
/* Spill all caller-saved registers before a call */
_jit_regs_spill_all(gen);
/* Generate code for the instruction with the back end */
_jit_gen_insn(gen, func, block, insn);
/* Free outgoing registers if any */
_jit_regs_clear_all_outgoing(gen);
break;
#endif
#ifndef JIT_BACKEND_INTERP
case JIT_OP_INCOMING_REG:
/* Assign a register to an incoming value */
_jit_regs_set_incoming(gen,
(int)jit_value_get_nint_constant(insn->value2),
insn->value1);
/* Generate code for the instruction with the back end */
_jit_gen_insn(gen, func, block, insn);
break;
#endif
case JIT_OP_INCOMING_FRAME_POSN:
/* Set the frame position for an incoming value */
insn->value1->frame_offset = jit_value_get_nint_constant(insn->value2);
insn->value1->in_register = 0;
insn->value1->has_frame_offset = 1;
if(insn->value1->has_global_register)
{
insn->value1->in_global_register = 1;
_jit_gen_load_global(gen, insn->value1->global_reg, insn->value1);
}
else
{
insn->value1->in_frame = 1;
}
break;
#ifndef JIT_BACKEND_INTERP
case JIT_OP_OUTGOING_REG:
/* Copy a value into an outgoing register */
_jit_regs_set_outgoing(gen,
(int)jit_value_get_nint_constant(insn->value2),
insn->value1);
break;
#endif
case JIT_OP_OUTGOING_FRAME_POSN:
/* Set the frame position for an outgoing value */
insn->value1->frame_offset = jit_value_get_nint_constant(insn->value2);
insn->value1->in_register = 0;
insn->value1->in_global_register = 0;
insn->value1->in_frame = 0;
insn->value1->has_frame_offset = 1;
insn->value1->has_global_register = 0;
break;
#ifndef JIT_BACKEND_INTERP
case JIT_OP_RETURN_REG:
/* Assign a register to a return value */
_jit_regs_set_incoming(gen,
(int)jit_value_get_nint_constant(insn->value2),
insn->value1);
/* Generate code for the instruction with the back end */
_jit_gen_insn(gen, func, block, insn);
break;
#endif
case JIT_OP_MARK_OFFSET:
/* Mark the current code position as corresponding
to a particular bytecode offset */
mark_offset(gen, func, (unsigned long)(long)jit_value_get_nint_constant(insn->value1));
break;
default:
/* Generate code for the instruction with the back end */
_jit_gen_insn(gen, func, block, insn);
break;
}
#ifdef _JIT_COMPILE_DEBUG
p2 = gen->ptr;
printf("Length of binary code: %d\n\n", p2 - p1);
fflush(stdout);
#endif
}
}
/*
* Reset value on codegen restart.
*/
static void
reset_value(jit_value_t value)
{
value->reg = -1;
value->in_register = 0;
value->in_global_register = value->has_global_register;
value->in_frame = 0;
}
/*
* Clean up the compilation state on codegen restart.
*/
static void
cleanup_on_restart(jit_gencode_t gen, jit_function_t func)
{
jit_block_t block;
jit_insn_iter_t iter;
jit_insn_t insn;
block = 0;
while((block = jit_block_next(func, block)) != 0)
{
/* Clear the block addresses and fixup lists */
block->address = 0;
block->fixup_list = 0;
block->fixup_absolute_list = 0;
/* Reset values referred to by block instructions */
jit_insn_iter_init(&iter, block);
while((insn = jit_insn_iter_next(&iter)) != 0)
{
if(insn->dest && (insn->flags & JIT_INSN_DEST_OTHER_FLAGS) == 0)
{
reset_value(insn->dest);
}
if(insn->value1 && (insn->flags & JIT_INSN_VALUE1_OTHER_FLAGS) == 0)
{
reset_value(insn->value1);
}
if(insn->value2 && (insn->flags & JIT_INSN_VALUE2_OTHER_FLAGS) == 0)
{
reset_value(insn->value2);
}
}
}
/* Reset values referred to by builder */
if(func->builder->setjmp_value)
{
reset_value(func->builder->setjmp_value);
}
if(func->builder->parent_frame)
{
reset_value(func->builder->parent_frame);
}
/* Reset the "touched" registers mask. The first time compilation
might have followed wrong code paths and thus allocated wrong
registers. */
if(func->builder->has_tail_call)
{
/* For functions with tail calls _jit_regs_alloc_global()
does not allocate any global registers. The "permanent"
mask has all global registers set to prevent their use. */
gen->touched = jit_regused_init;
}
else
{
gen->touched = gen->permanent;
}
/* Reset the epilog fixup list */
gen->epilog_fixup = 0;
}
/*
* Acquire the memory context.
*/
static void
memory_acquire(_jit_compile_t *state)
{
/* Store the function's context as codegen context */
state->gen.context = state->func->context;
/* Acquire the memory context lock */
_jit_memory_lock(state->gen.context);
/* Remember that the lock is acquired */
state->memory_locked = 1;
if(!_jit_memory_ensure(state->gen.context))
{
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
}
/*
* Release the memory context.
*/
static void
memory_release(_jit_compile_t *state)
{
/* Release the lock if it was previously acquired */
if(state->memory_locked)
{
_jit_memory_unlock(state->gen.context);
state->memory_locked = 0;
}
}
/*
* Align the method code on a particular boundary if the
* difference between the current position and the aligned
* boundary is less than "diff". The "nop" value is used
* to pad unused bytes.
*/
static void
memory_align(_jit_compile_t *state, int align, int diff, int nop)
{
jit_nuint p, n;
/* Adjust the required alignment */
if(align < 1)
{
align = 1;
}
/* Determine the location of the next alignment boundary */
p = (jit_nuint) state->gen.ptr;
n = (p + (jit_nuint) align - 1) & ~((jit_nuint) align - 1);
if(p == n || (p - n) >= (jit_nuint) diff)
{
return;
}
/* Determine the actual alignment */
align = (int) (n - p);
/* Detect overflow of the free memory region */
_jit_gen_check_space(&state->gen, align);
#ifdef jit_should_pad
/* Use CPU-specific padding, because it may be more efficient */
_jit_pad_buffer(state->gen.ptr, align);
#else
jit_memset(state->gen.ptr, nop, align);
state->gen.ptr += align;
#endif
}
/*
* Prepare to start code generation with just allocated code space.
*/
static void
memory_start(_jit_compile_t *state)
{
/* Remember the memory context state */
state->memory_started = 1;
/* Store the bounds of the available space */
state->gen.mem_start = _jit_memory_get_break(state->gen.context);
state->gen.mem_limit = _jit_memory_get_limit(state->gen.context);
/* Align the function code start as required */
state->gen.ptr = state->gen.mem_start;
memory_align(state, JIT_FUNCTION_ALIGNMENT, JIT_FUNCTION_ALIGNMENT, 0);
/* Prepare the bytecode offset encoder */
_jit_varint_init_encoder(&state->gen.offset_encoder);
}
/*
* Allocate some amount of code space.
*/
static void
memory_alloc(_jit_compile_t *state)
{
int result;
/* Try to allocate within the current memory limit */
result = _jit_memory_start_function(state->gen.context, state->func);
if(result == JIT_MEMORY_RESTART)
{
/* Not enough space. Request to extend the limit and retry */
_jit_memory_extend_limit(state->gen.context, state->page_factor++);
result = _jit_memory_start_function(state->gen.context, state->func);
}
if(result != JIT_MEMORY_OK)
{
/* Failed to allocate any space */
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
/* Start with with allocated space */
memory_start(state);
}
/*
* Finish code generation.
*/
static void
memory_flush(_jit_compile_t *state)
{
int result;
if(state->memory_started)
{
/* Reset the memory state */
state->memory_started = 0;
/* Let the memory context know the address we ended at */
_jit_memory_set_break(state->gen.context, state->gen.code_end);
/* Finally end the function */
result = _jit_memory_end_function(state->gen.context, JIT_MEMORY_OK);
if(result != JIT_MEMORY_OK)
{
if(result == JIT_MEMORY_RESTART)
{
/* Throw an internal exception that causes
a larger code space to be allocated and
the code generation to restart */
jit_exception_builtin(JIT_RESULT_MEMORY_FULL);
}
else
{
/* Throw exception that indicates failure
to allocate enough code space */
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
}
#ifndef JIT_BACKEND_INTERP
/* On success perform a CPU cache flush, to make the code executable */
_jit_flush_exec(state->gen.code_start,
state->gen.code_end - state->gen.code_start);
#endif
/* Terminate the debug information and flush it */
if(!_jit_varint_encode_end(&state->gen.offset_encoder))
{
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
state->func->bytecode_offset = _jit_varint_get_data(&state->gen.offset_encoder);
}
}
/*
* Give back the allocated space in case of failure to generate the code.
*/
static void
memory_abort(_jit_compile_t *state)
{
if(state->memory_started)
{
state->memory_started = 0;
/* Release the code space */
_jit_memory_end_function(state->gen.context, JIT_MEMORY_RESTART);
/* Free encoded bytecode offset data */
_jit_varint_free_data(_jit_varint_get_data(&state->gen.offset_encoder));
}
}
/*
* Allocate more code space.
*/
static void
memory_realloc(_jit_compile_t *state)
{
int result;
/* Release the previously allocated code space */
memory_abort(state);
/* Request to extend memory limit and retry space allocation */
_jit_memory_extend_limit(state->gen.context, state->page_factor++);
result = _jit_memory_start_function(state->gen.context, state->func);
if(result != JIT_MEMORY_OK)
{
/* Failed to allocate enough space */
jit_exception_builtin(JIT_RESULT_OUT_OF_MEMORY);
}
/* Start with with allocated space */
memory_start(state);
}
/*
* Prepare function info needed for code generation.
*/
static void
codegen_prepare(_jit_compile_t *state)
{
/* Intuit "nothrow" and "noreturn" flags for this function */
if(!state->func->builder->may_throw)
{
state->func->no_throw = 1;
}
if(!state->func->builder->ordinary_return)
{
state->func->no_return = 1;
}
/* Compute liveness and "next use" information for this function */
_jit_function_compute_liveness(state->func);
/* Allocate global registers to variables within the function */
#ifndef JIT_BACKEND_INTERP
_jit_regs_alloc_global(&state->gen, state->func);
#endif
}
/*
* Run codegen.
*/
static void
codegen(_jit_compile_t *state)
{
jit_function_t func = state->func;
struct jit_gencode *gen = &state->gen;
jit_block_t block;
/* Remember the start code address (due to alignment it may differ from
the available space start - gen->start) */
gen->code_start = gen->ptr;
#ifdef JIT_PROLOG_SIZE
/* Output space for the function prolog */
_jit_gen_check_space(gen, JIT_PROLOG_SIZE);
gen->ptr += JIT_PROLOG_SIZE;
#endif
/* Generate code for the blocks in the function */
block = 0;
while((block = jit_block_next(func, block)) != 0)
{
/* Notify the back end that the block is starting */
_jit_gen_start_block(gen, block);
#ifndef JIT_BACKEND_INTERP
/* Clear the local register assignments */
_jit_regs_init_for_block(gen);
#endif
/* Generate the block's code */
compile_block(gen, func, block);
#ifndef JIT_BACKEND_INTERP
/* Spill all live register values back to their frame positions */
_jit_regs_spill_all(gen);
#endif
/* Notify the back end that the block is finished */
_jit_gen_end_block(gen, block);
}
/* Output the function epilog. All return paths will jump to here */
_jit_gen_epilog(gen, func);
/* Remember the end code address */
gen->code_end = gen->ptr;
#ifdef JIT_PROLOG_SIZE
/* Back-patch the function prolog and get the real entry point */
gen->code_start = _jit_gen_prolog(gen, func, gen->code_start);
#endif
#if !defined(JIT_BACKEND_INTERP) && (!defined(jit_redirector_size) || !defined(jit_indirector_size))
/* If the function is recompilable, then we need an extra entry
point to properly redirect previous references to the function */
if(func->is_recompilable && !func->indirector)
{
/* TODO: use _jit_create_indirector() instead of
_jit_gen_redirector() as both do the same. */
func->indirector = _jit_gen_redirector(&gen, func);
}
#endif
}
/*
* Compile a function and return its entry point.
*/
static int
compile(_jit_compile_t *state, jit_function_t func)
{
jit_exception_func handler;
jit_jmp_buf jbuf;
int result;
/* Initialize compilation state */
jit_memzero(state, sizeof(_jit_compile_t));
state->func = func;
/* Replace user's exception handler with internal handler */
handler = jit_exception_set_handler(internal_exception_handler);
/* Establish a "setjmp" point here so that we can unwind the
stack to this point when an exception occurs and then prevent
the exception from propagating further up the stack */
_jit_unwind_push_setjmp(&jbuf);
restart:
/* Handle compilation exceptions */
if(setjmp(jbuf.buf))
{
result = _JIT_RESULT_FROM_OBJECT(jit_exception_get_last_and_clear());
if(result == JIT_RESULT_MEMORY_FULL)
{
/* Restart code generation after the memory full condition */
state->restart = 1;
goto restart;
}
/* Release allocated code space and exit */
memory_abort(state);
goto exit;
}
if(state->restart == 0)
{
/* Start compilation */
/* Perform machine-independent optimizations */
optimize(state->func);
/* Prepare data needed for code generation */
codegen_prepare(state);
/* Allocate some space */
memory_acquire(state);
memory_alloc(state);
}
else
{
/* Restart compilation */
/* Clean up the compilation state */
cleanup_on_restart(&state->gen, state->func);
/* Allocate more space */
memory_realloc(state);
}
#ifdef _JIT_COMPILE_DEBUG
if(state->restart == 0)
{
printf("\n*** Start code generation ***\n\n");
}
else
{
printf("\n*** Restart code generation ***\n\n");
}
state->func->builder->block_count = 0;
state->func->builder->insn_count = 0;
#endif
#ifdef jit_extra_gen_init
/* Initialize information that may need to be reset both
on start and restart */
jit_extra_gen_init(&state->gen);
#endif
/* Perform code generation */
codegen(state);
#ifdef jit_extra_gen_cleanup
/* Clean up the extra code generation state */
jit_extra_gen_cleanup(&state->gen);
#endif
/* End the function's output process */
memory_flush(state);
/* Compilation done, no exceptions occurred */
result = JIT_RESULT_OK;
exit:
/* Release the memory context */
memory_release(state);
/* Restore the "setjmp" context */
_jit_unwind_pop_setjmp();
/* Restore user's exception handler */
jit_exception_set_handler(handler);
return result;
}
/*@
* @deftypefun int jit_compile (jit_function_t @var{func})
* Compile a function to its executable form. If the function was
* already compiled, then do nothing. Returns zero on error.
*
* If an error occurs, you can use @code{jit_function_abandon} to
* completely destroy the function. Once the function has been compiled
* successfully, it can no longer be abandoned.
*
* Sometimes you may wish to recompile a function, to apply greater
* levels of optimization the second time around. You must call
* @code{jit_function_set_recompilable} before you compile the function
* the first time. On the second time around, build the function's
* instructions again, and call @code{jit_compile} a second time.
* @end deftypefun
@*/
int
jit_compile(jit_function_t func)
{
_jit_compile_t state;
int result;
/* Bail out on invalid parameter */
if(!func)
{
return JIT_RESULT_NULL_FUNCTION;
}
/* Bail out if there is nothing to do here */
if(!func->builder)
{
if(func->is_compiled)
{
/* The function is already compiled, and we don't need to recompile */
return JIT_RESULT_OK;
}
else
{
/* We don't have anything to compile at all */
return JIT_RESULT_NULL_FUNCTION;
}
}
/* Compile and record the entry point */
result = compile(&state, func);
if(result == JIT_RESULT_OK)
{
func->entry_point = state.gen.code_start;
func->is_compiled = 1;
/* Free the builder structure, which we no longer require */
_jit_function_free_builder(func);
}
return result;
}
/*@
* @deftypefun int jit_compile_entry (jit_function_t @var{func}, void **@var{entry_point})
* Compile a function to its executable form but do not make it
* available for invocation yet. It may be made available later
* with @code{jit_function_setup_entry}.
* @end deftypefun
@*/
int
jit_compile_entry(jit_function_t func, void **entry_point)
{
_jit_compile_t state;
int result;
/* Init entry_point */
if(entry_point)
{
*entry_point = 0;
}
else
{
return JIT_RESULT_NULL_REFERENCE;
}
/* Bail out on invalid parameter */
if(!func)
{
return JIT_RESULT_NULL_FUNCTION;
}
/* Bail out if there is nothing to do here */
if(!func->builder)
{
if(func->is_compiled)
{
/* The function is already compiled, and we don't need to recompile */
*entry_point = func->entry_point;
return JIT_RESULT_OK;
}
else
{
/* We don't have anything to compile at all */
return JIT_RESULT_NULL_FUNCTION;
}
}
/* Compile and return the entry point */
result = compile(&state, func);
if(result == JIT_RESULT_OK)
{
*entry_point = state.gen.code_start;
}
return result;
}
/*@
* @deftypefun int jit_function_setup_entry (jit_function_t @var{func}, void *@var{entry_point})
* Make a function compiled with @code{jit_function_compile_entry}
* available for invocation and free the resources used for
* compilation. If @var{entry_point} is null then it only
* frees the resources.
* @end deftypefun
@*/
void
jit_function_setup_entry(jit_function_t func, void *entry_point)
{
/* Bail out if we have nothing to do */
if(!func)
{
return;
}
/* Record the entry point */
if(entry_point)
{
func->entry_point = entry_point;
func->is_compiled = 1;
}
_jit_function_free_builder(func);
}
/*@
* @deftypefun int jit_function_compile (jit_function_t @var{func})
* Compile a function to its executable form. If the function was
* already compiled, then do nothing. Returns zero on error.
*
* If an error occurs, you can use @code{jit_function_abandon} to
* completely destroy the function. Once the function has been compiled
* successfully, it can no longer be abandoned.
*
* Sometimes you may wish to recompile a function, to apply greater
* levels of optimization the second time around. You must call
* @code{jit_function_set_recompilable} before you compile the function
* the first time. On the second time around, build the function's
* instructions again, and call @code{jit_function_compile}
* a second time.
* @end deftypefun
@*/
int
jit_function_compile(jit_function_t func)
{
return (JIT_RESULT_OK == jit_compile(func));
}
/*@
* @deftypefun int jit_function_compile_entry (jit_function_t @var{func}, void **@var{entry_point})
* Compile a function to its executable form but do not make it
* available for invocation yet. It may be made available later
* with @code{jit_function_setup_entry}.
* @end deftypefun
@*/
int
jit_function_compile_entry(jit_function_t func, void **entry_point)
{
return (JIT_RESULT_OK == jit_compile_entry(func, entry_point));
}
void *
_jit_function_compile_on_demand(jit_function_t func)
{
_jit_compile_t state;
int result;
/* Lock down the context */
jit_context_build_start(func->context);
/* Fast return if we are already compiled */
if(func->is_compiled)
{
jit_context_build_end(func->context);
return func->entry_point;
}
if(!func->on_demand)
{
/* Bail out with an error if the user didn't supply an
on-demand compiler */
result = JIT_RESULT_COMPILE_ERROR;
}
else
{
/* Call the user's on-demand compiler. */
result = (func->on_demand)(func);
if(result == JIT_RESULT_OK && !func->is_compiled)
{
/* Compile the function if the user didn't do so */
result = compile(&state, func);
if(result == JIT_RESULT_OK)
{
func->entry_point = state.gen.code_start;
func->is_compiled = 1;
}
}
_jit_function_free_builder(func);
}
/* Unlock the context and report the result */
jit_context_build_end(func->context);
if(result != JIT_RESULT_OK)
{
jit_exception_builtin(result);
/* Normally this should be unreachable but just in case... */
return 0;
}
return func->entry_point;
}
#define JIT_CACHE_NO_OFFSET (~((unsigned long)0))
unsigned long
_jit_function_get_bytecode(jit_function_t func,
void *func_info, void *pc, int exact)
{
unsigned long offset = JIT_CACHE_NO_OFFSET;
void *start;
unsigned long native_offset;
jit_varint_decoder_t decoder;
jit_uint off, noff;
start = _jit_memory_get_function_start(func->context, func_info);
native_offset = pc - start;
_jit_varint_init_decoder(&decoder, func->bytecode_offset);
for(;;)
{
off = _jit_varint_decode_uint(&decoder);
noff = _jit_varint_decode_uint(&decoder);
if(_jit_varint_decode_end(&decoder))
{
if(exact)
{
offset = JIT_CACHE_NO_OFFSET;
}
break;
}
if(noff >= native_offset)
{
if(noff == native_offset)
{
offset = off;
}
else if (exact)
{
offset = JIT_CACHE_NO_OFFSET;
}
break;
}
offset = off;
}
return offset;
}