You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1489 lines
33 KiB

/*
* jit-rules-x86.c - Rules that define the characteristics of the x86.
*
* Copyright (C) 2004 Southern Storm Software, Pty Ltd.
*
* This file is part of the libjit library.
*
* The libjit library is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 2.1 of
* the License, or (at your option) any later version.
*
* The libjit library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with the libjit library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "jit-internal.h"
#include "jit-rules.h"
#include "jit-apply-rules.h"
#if defined(JIT_BACKEND_X86)
#include "jit-gen-x86.h"
#include "jit-reg-alloc.h"
#include "jit-setjmp.h"
#include <stdio.h>
/*
* Pseudo register numbers for the x86 registers. These are not the
* same as the CPU instruction register numbers. The order of these
* values must match the order in "JIT_REG_INFO".
*/
#define X86_REG_EAX 0
#define X86_REG_ECX 1
#define X86_REG_EDX 2
#define X86_REG_EBX 3
#define X86_REG_ESI 4
#define X86_REG_EDI 5
#define X86_REG_EBP 6
#define X86_REG_ESP 7
#define X86_REG_ST0 8
#define X86_REG_ST1 9
#define X86_REG_ST2 10
#define X86_REG_ST3 11
#define X86_REG_ST4 12
#define X86_REG_ST5 13
#define X86_REG_ST6 14
#define X86_REG_ST7 15
/*
* Determine if a pseudo register number is word-based or float-based.
*/
#define IS_WORD_REG(reg) ((reg) < X86_REG_ST0)
#define IS_FLOAT_REG(reg) ((reg) >= X86_REG_ST0)
/*
* Round a size up to a multiple of the stack word size.
*/
#define ROUND_STACK(size) \
(((size) + (sizeof(void *) - 1)) & ~(sizeof(void *) - 1))
static _jit_regclass_t *x86_reg;
static _jit_regclass_t *x86_breg;
static _jit_regclass_t *x86_freg;
static _jit_regclass_t *x86_lreg;
void _jit_init_backend(void)
{
x86_reg = _jit_regclass_create(
"reg", JIT_REG_WORD, 6,
X86_REG_EAX, X86_REG_ECX,
X86_REG_EDX, X86_REG_EBX,
X86_REG_ESI, X86_REG_EDI);
x86_breg = _jit_regclass_create(
"breg", JIT_REG_WORD, 4,
X86_REG_EAX, X86_REG_ECX,
X86_REG_EDX, X86_REG_EBX);
x86_freg = _jit_regclass_create(
"freg", JIT_REG_X86_FLOAT | JIT_REG_IN_STACK, 8,
X86_REG_ST0, X86_REG_ST1,
X86_REG_ST2, X86_REG_ST3,
X86_REG_ST4, X86_REG_ST5,
X86_REG_ST6, X86_REG_ST7);
x86_lreg = _jit_regclass_create(
"lreg", JIT_REG_LONG, 2,
X86_REG_EAX, X86_REG_ECX);
}
void _jit_gen_get_elf_info(jit_elf_info_t *info)
{
#ifdef JIT_NATIVE_INT32
info->machine = 3; /* EM_386 */
#else
info->machine = 62; /* EM_X86_64 */
#endif
#if JIT_APPLY_X86_FASTCALL == 0
info->abi = 0; /* ELFOSABI_SYSV */
#else
info->abi = 186; /* Private code, indicating STDCALL/FASTCALL support */
#endif
info->abi_version = 0;
}
int _jit_setup_indirect_pointer(jit_function_t func, jit_value_t value)
{
return jit_insn_outgoing_reg(func, value, X86_REG_EAX);
}
int _jit_create_call_return_insns
(jit_function_t func, jit_type_t signature,
jit_value_t *args, unsigned int num_args,
jit_value_t return_value, int is_nested)
{
jit_nint pop_bytes;
unsigned int size;
jit_type_t return_type;
int ptr_return;
/* Calculate the number of bytes that we need to pop */
return_type = jit_type_normalize(jit_type_get_return(signature));
ptr_return = jit_type_return_via_pointer(return_type);
#if JIT_APPLY_X86_FASTCALL == 1
if(jit_type_get_abi(signature) == jit_abi_stdcall ||
jit_type_get_abi(signature) == jit_abi_fastcall)
{
/* STDCALL and FASTCALL functions pop their own arguments */
pop_bytes = 0;
}
else
#endif
{
pop_bytes = 0;
while(num_args > 0)
{
--num_args;
size = jit_type_get_size(jit_value_get_type(args[num_args]));
pop_bytes += ROUND_STACK(size);
}
#if JIT_APPLY_X86_POP_STRUCT_RETURN == 1
if(ptr_return && is_nested)
{
/* Note: we only need this for nested functions, because
regular functions will pop the structure return for us */
pop_bytes += sizeof(void *);
}
#else
if(ptr_return)
{
pop_bytes += sizeof(void *);
}
#endif
if(is_nested)
{
pop_bytes += sizeof(void *);
}
}
/* Pop the bytes from the system stack */
if(pop_bytes > 0)
{
if(!jit_insn_defer_pop_stack(func, pop_bytes))
{
return 0;
}
}
/* Bail out now if we don't need to worry about return values */
if(!return_value || ptr_return)
{
return 1;
}
/* Structure values must be flushed into the frame, and
everything else ends up in a register */
if(jit_type_is_struct(return_type) || jit_type_is_union(return_type))
{
if(!jit_insn_flush_struct(func, return_value))
{
return 0;
}
}
else if(return_type == jit_type_float32 ||
return_type == jit_type_float64 ||
return_type == jit_type_nfloat)
{
if(!jit_insn_return_reg(func, return_value, X86_REG_ST0))
{
return 0;
}
}
else if(return_type->kind != JIT_TYPE_VOID)
{
if(!jit_insn_return_reg(func, return_value, X86_REG_EAX))
{
return 0;
}
}
/* Everything is back where it needs to be */
return 1;
}
int _jit_opcode_is_supported(int opcode)
{
switch(opcode)
{
#define JIT_INCLUDE_SUPPORTED
#include "jit-rules-x86.inc"
#undef JIT_INCLUDE_SUPPORTED
}
return 0;
}
void *_jit_gen_prolog(jit_gencode_t gen, jit_function_t func, void *buf)
{
unsigned char prolog[JIT_PROLOG_SIZE];
unsigned char *inst = prolog;
int reg;
/* Push ebp onto the stack */
x86_push_reg(inst, X86_EBP);
/* Initialize EBP for the current frame */
x86_mov_reg_reg(inst, X86_EBP, X86_ESP, sizeof(void *));
/* Allocate space for the local variable frame */
if(func->builder->frame_size > 0)
{
x86_alu_reg_imm(inst, X86_SUB, X86_ESP,
(int)(func->builder->frame_size));
}
/* Save registers that we need to preserve */
for(reg = 0; reg <= 7; ++reg)
{
if(jit_reg_is_used(gen->touched, reg) &&
(_jit_reg_info[reg].flags & JIT_REG_CALL_USED) == 0)
{
x86_push_reg(inst, _jit_reg_info[reg].cpu_reg);
}
}
/* Copy the prolog into place and return the adjusted entry position */
reg = (int)(inst - prolog);
jit_memcpy(((unsigned char *)buf) + JIT_PROLOG_SIZE - reg, prolog, reg);
return (void *)(((unsigned char *)buf) + JIT_PROLOG_SIZE - reg);
}
void _jit_gen_epilog(jit_gencode_t gen, jit_function_t func)
{
jit_nint pop_bytes = 0;
int reg, offset;
unsigned char *inst;
int struct_return_offset = 0;
void **fixup;
void **next;
/* Check if there is sufficient space for the epilog */
_jit_gen_check_space(gen, 48);
#if JIT_APPLY_X86_FASTCALL == 1
/* Determine the number of parameter bytes to pop when we return */
{
jit_type_t signature;
unsigned int num_params;
unsigned int param;
signature = func->signature;
if(jit_type_get_abi(signature) == jit_abi_stdcall ||
jit_type_get_abi(signature) == jit_abi_fastcall)
{
if(func->nested_parent)
{
pop_bytes += sizeof(void *);
}
if(jit_type_return_via_pointer(jit_type_get_return(signature)))
{
struct_return_offset = 2 * sizeof(void *) + pop_bytes;
pop_bytes += sizeof(void *);
}
num_params = jit_type_num_params(signature);
for(param = 0; param < num_params; ++param)
{
pop_bytes += ROUND_STACK
(jit_type_get_size
(jit_type_get_param(signature, param)));
}
if(jit_type_get_abi(signature) == jit_abi_fastcall)
{
/* The first two words are in fastcall registers */
if(pop_bytes > (2 * sizeof(void *)))
{
pop_bytes -= 2 * sizeof(void *);
}
else
{
pop_bytes = 0;
}
struct_return_offset = 0;
}
}
else if(!(func->nested_parent) &&
jit_type_return_via_pointer(jit_type_get_return(signature)))
{
#if JIT_APPLY_X86_POP_STRUCT_RETURN == 1
pop_bytes += sizeof(void *);
#endif
struct_return_offset = 2 * sizeof(void *);
}
}
#else
{
/* We only need to pop structure pointers in non-nested functions */
jit_type_t signature;
signature = func->signature;
if(!(func->nested_parent) &&
jit_type_return_via_pointer(jit_type_get_return(signature)))
{
#if JIT_APPLY_X86_POP_STRUCT_RETURN == 1
pop_bytes += sizeof(void *);
#endif
struct_return_offset = 2 * sizeof(void *);
}
}
#endif
/* Perform fixups on any blocks that jump to the epilog */
inst = gen->ptr;
fixup = (void **)(gen->epilog_fixup);
while(fixup != 0)
{
next = (void **)(fixup[0]);
fixup[0] = (void *)(((jit_nint)inst) - ((jit_nint)fixup) - 4);
fixup = next;
}
gen->epilog_fixup = 0;
/* If we are returning a structure via a pointer, then copy
the pointer value into EAX when we return */
if(struct_return_offset != 0)
{
x86_mov_reg_membase(inst, X86_EAX, X86_EBP, struct_return_offset, 4);
}
/* Restore the callee save registers that we used */
if(gen->stack_changed)
{
offset = -(func->builder->frame_size);
for(reg = 0; reg <= 7; ++reg)
{
if(jit_reg_is_used(gen->touched, reg) &&
(_jit_reg_info[reg].flags & JIT_REG_CALL_USED) == 0)
{
offset -= sizeof(void *);
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, sizeof(void *));
}
}
}
else
{
for(reg = 7; reg >= 0; --reg)
{
if(jit_reg_is_used(gen->touched, reg) &&
(_jit_reg_info[reg].flags & JIT_REG_CALL_USED) == 0)
{
x86_pop_reg(inst, _jit_reg_info[reg].cpu_reg);
}
}
}
/* Pop the stack frame and restore the saved copy of ebp */
if(gen->stack_changed || func->builder->frame_size > 0)
{
x86_mov_reg_reg(inst, X86_ESP, X86_EBP, sizeof(void *));
}
x86_pop_reg(inst, X86_EBP);
/* Return from the current function */
if(pop_bytes > 0)
{
x86_ret_imm(inst, pop_bytes);
}
else
{
x86_ret(inst);
}
gen->ptr = inst;
}
#if 0
/*
* The x86 backend does not need this function because it uses
* _jit_create_indirector() instead.
*/
void *_jit_gen_redirector(jit_gencode_t gen, jit_function_t func)
{
void *ptr, *entry;
_jit_gen_check_space(gen, 8);
ptr = (void *)&(func->entry_point);
entry = gen->ptr;
x86_jump_mem(gen->ptr, ptr);
return entry;
}
#endif
/*
* Setup or teardown the x86 code output process.
*/
#define jit_cache_setup_output(needed) \
unsigned char *inst = gen->ptr; \
_jit_gen_check_space(gen, (needed))
#define jit_cache_end_output() \
gen->ptr = inst
/*
* Get a temporary register that isn't one of the specified registers.
*/
static int get_temp_reg(int reg1, int reg2, int reg3)
{
if(reg1 != X86_EAX && reg2 != X86_EAX && reg3 != X86_EAX)
{
return X86_EAX;
}
if(reg1 != X86_EDX && reg2 != X86_EDX && reg3 != X86_EDX)
{
return X86_EDX;
}
if(reg1 != X86_ECX && reg2 != X86_ECX && reg3 != X86_ECX)
{
return X86_ECX;
}
if(reg1 != X86_EBX && reg2 != X86_EBX && reg3 != X86_EBX)
{
return X86_EBX;
}
if(reg1 != X86_ESI && reg2 != X86_ESI && reg3 != X86_ESI)
{
return X86_ESI;
}
return X86_EDI;
}
/*
* Store a byte value to a membase address.
*/
static unsigned char *mov_membase_reg_byte
(unsigned char *inst, int basereg, int offset, int srcreg)
{
if(srcreg == X86_EAX || srcreg == X86_EBX ||
srcreg == X86_ECX || srcreg == X86_EDX)
{
x86_mov_membase_reg(inst, basereg, offset, srcreg, 1);
}
else if(basereg != X86_EAX)
{
x86_push_reg(inst, X86_EAX);
x86_mov_reg_reg(inst, X86_EAX, srcreg, 4);
x86_mov_membase_reg(inst, basereg, offset, X86_EAX, 1);
x86_pop_reg(inst, X86_EAX);
}
else
{
x86_push_reg(inst, X86_EDX);
x86_mov_reg_reg(inst, X86_EDX, srcreg, 4);
x86_mov_membase_reg(inst, basereg, offset, X86_EDX, 1);
x86_pop_reg(inst, X86_EDX);
}
return inst;
}
/*
* Store a small structure from registers to a pointer. The base
* register must not be either "reg" or "other_reg".
*/
static unsigned char *store_small_struct
(unsigned char *inst, int reg, int other_reg,
int base_reg, jit_nint offset, jit_nint size, int preserve)
{
switch(size)
{
case 1:
{
inst = mov_membase_reg_byte(inst, base_reg, offset, reg);
}
break;
case 2:
{
x86_mov_membase_reg(inst, base_reg, offset, reg, 2);
}
break;
case 3:
{
if(preserve)
{
x86_push_reg(inst, reg);
}
x86_mov_membase_reg(inst, base_reg, offset, reg, 2);
x86_shift_reg_imm(inst, reg, X86_SHR, 16);
inst = mov_membase_reg_byte(inst, base_reg, offset + 2, reg);
if(preserve)
{
x86_pop_reg(inst, reg);
}
}
break;
case 4:
{
x86_mov_membase_reg(inst, base_reg, offset, reg, 4);
}
break;
case 5:
{
x86_mov_membase_reg(inst, base_reg, offset, reg, 4);
inst = mov_membase_reg_byte(inst, base_reg, offset + 4, other_reg);
}
break;
case 6:
{
x86_mov_membase_reg(inst, base_reg, offset, reg, 4);
x86_mov_membase_reg(inst, base_reg, offset + 4, other_reg, 2);
}
break;
case 7:
{
if(preserve)
{
x86_push_reg(inst, other_reg);
}
x86_mov_membase_reg(inst, base_reg, offset, reg, 4);
x86_mov_membase_reg(inst, base_reg, offset + 4, other_reg, 2);
x86_shift_reg_imm(inst, other_reg, X86_SHR, 16);
inst = mov_membase_reg_byte(inst, base_reg, offset + 6, other_reg);
if(preserve)
{
x86_pop_reg(inst, other_reg);
}
}
break;
case 8:
{
x86_mov_membase_reg(inst, base_reg, offset, reg, 4);
x86_mov_membase_reg(inst, base_reg, offset + 4, other_reg, 4);
}
break;
}
return inst;
}
void _jit_gen_spill_reg(jit_gencode_t gen, int reg,
int other_reg, jit_value_t value)
{
int offset;
/* Make sure that we have sufficient space */
jit_cache_setup_output(16);
/* If the value is associated with a global register, then copy to that */
if(value->has_global_register)
{
reg = _jit_reg_info[reg].cpu_reg;
other_reg = _jit_reg_info[value->global_reg].cpu_reg;
x86_mov_reg_reg(inst, other_reg, reg, sizeof(void *));
jit_cache_end_output();
return;
}
/* Fix the value in place within the local variable frame */
_jit_gen_fix_value(value);
/* Output an appropriate instruction to spill the value */
offset = (int)(value->frame_offset);
if(IS_WORD_REG(reg))
{
/* Spill a word register. If the value is smaller than a word,
then we write the entire word. The local stack frame is
allocated such that the extra bytes will be simply ignored */
reg = _jit_reg_info[reg].cpu_reg;
x86_mov_membase_reg(inst, X86_EBP, offset, reg, 4);
if(other_reg != -1)
{
/* Spill the other word register in a pair */
reg = _jit_reg_info[other_reg].cpu_reg;
offset += sizeof(void *);
x86_mov_membase_reg(inst, X86_EBP, offset, reg, 4);
}
}
else
{
/* Spill the top of the floating-point register stack */
switch(jit_type_normalize(value->type)->kind)
{
case JIT_TYPE_FLOAT32:
{
x86_fst_membase(inst, X86_EBP, offset, 0, 1);
}
break;
case JIT_TYPE_FLOAT64:
{
x86_fst_membase(inst, X86_EBP, offset, 1, 1);
}
break;
case JIT_TYPE_NFLOAT:
{
x86_fst80_membase(inst, X86_EBP, offset);
}
break;
}
}
/* End the code output process */
jit_cache_end_output();
}
void
_jit_gen_free_reg(jit_gencode_t gen, int reg, int other_reg, int value_used)
{
/* We only need to take explicit action if we are freeing a
floating-point register whose value hasn't been used yet */
if(!value_used && IS_FLOAT_REG(reg))
{
_jit_gen_check_space(gen, 2);
x86_fstp(gen->ptr, reg - X86_REG_ST0);
}
}
static int
fp_stack_index(jit_gencode_t gen, int reg)
{
return gen->reg_stack_top - reg - 1;
}
void
_jit_gen_exch_top(jit_gencode_t gen, int reg)
{
if(IS_FLOAT_REG(reg))
{
jit_cache_setup_output(2);
x86_fxch(inst, fp_stack_index(gen, reg));
jit_cache_end_output();
}
}
void
_jit_gen_move_top(jit_gencode_t gen, int reg)
{
if(IS_FLOAT_REG(reg))
{
jit_cache_setup_output(2);
x86_fstp(inst, fp_stack_index(gen, reg));
jit_cache_end_output();
}
}
void
_jit_gen_spill_top(jit_gencode_t gen, int reg, jit_value_t value, int pop)
{
int offset;
if(IS_FLOAT_REG(reg))
{
/* Make sure that we have sufficient space */
jit_cache_setup_output(16);
/* Fix the value in place within the local variable frame */
_jit_gen_fix_value(value);
/* Output an appropriate instruction to spill the value */
offset = (int)(value->frame_offset);
/* Spill the top of the floating-point register stack */
switch(jit_type_normalize(value->type)->kind)
{
case JIT_TYPE_FLOAT32:
{
x86_fst_membase(inst, X86_EBP, offset, 0, pop);
}
break;
case JIT_TYPE_FLOAT64:
{
x86_fst_membase(inst, X86_EBP, offset, 1, pop);
}
break;
case JIT_TYPE_NFLOAT:
{
x86_fst80_membase(inst, X86_EBP, offset);
if(!pop)
{
x86_fld80_membase(inst, X86_EBP, offset);
}
}
break;
}
/* End the code output process */
jit_cache_end_output();
}
}
void
_jit_gen_load_value(jit_gencode_t gen, int reg, int other_reg, jit_value_t value)
{
jit_type_t type;
int src_reg, other_src_reg;
void *ptr;
int offset;
/* Make sure that we have sufficient space */
jit_cache_setup_output(16);
type = jit_type_normalize(value->type);
/* Load zero */
if(value->is_constant)
{
switch(type->kind)
{
case JIT_TYPE_SBYTE:
case JIT_TYPE_UBYTE:
case JIT_TYPE_SHORT:
case JIT_TYPE_USHORT:
case JIT_TYPE_INT:
case JIT_TYPE_UINT:
{
if((jit_nint)(value->address) == 0)
{
x86_clear_reg(inst, _jit_reg_info[reg].cpu_reg);
}
else
{
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg,
(jit_nint)(value->address));
}
}
break;
case JIT_TYPE_LONG:
case JIT_TYPE_ULONG:
{
jit_long long_value;
long_value = jit_value_get_long_constant(value);
if(long_value == 0)
{
#ifdef JIT_NATIVE_INT64
x86_clear_reg(inst, _jit_reg_info[reg].cpu_reg);
#else
x86_clear_reg(inst, _jit_reg_info[reg].cpu_reg);
x86_clear_reg(inst, _jit_reg_info[other_reg].cpu_reg);
#endif
}
else
{
#ifdef JIT_NATIVE_INT64
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg,
(jit_nint)long_value);
#else
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg,
(jit_int)long_value);
x86_mov_reg_imm(inst, _jit_reg_info[other_reg].cpu_reg,
(jit_int)(long_value >> 32));
#endif
}
}
break;
case JIT_TYPE_FLOAT32:
{
jit_float32 float32_value;
float32_value = jit_value_get_float32_constant(value);
if(IS_WORD_REG(reg))
{
union
{
jit_float32 float32_value;
jit_int int_value;
} un;
un.float32_value = float32_value;
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg, un.int_value);
}
else
{
if(float32_value == (jit_float32) 0.0)
{
x86_fldz(inst);
}
else if(float32_value == (jit_float32) 1.0)
{
x86_fld1(inst);
}
else
{
ptr = _jit_gen_alloc(gen, sizeof(jit_float32));
jit_memcpy(ptr, &float32_value, sizeof(float32_value));
x86_fld(inst, ptr, 0);
}
}
}
break;
case JIT_TYPE_FLOAT64:
{
jit_float64 float64_value;
float64_value = jit_value_get_float64_constant(value);
if(IS_WORD_REG(reg))
{
union
{
jit_float64 float64_value;
jit_int int_value[2];
} un;
un.float64_value = float64_value;
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg,
un.int_value[0]);
x86_mov_reg_imm(inst, _jit_reg_info[other_reg].cpu_reg,
un.int_value[1]);
}
else
{
if(float64_value == (jit_float64) 0.0)
{
x86_fldz(inst);
}
else if(float64_value == (jit_float64) 1.0)
{
x86_fld1(inst);
}
else
{
ptr = _jit_gen_alloc(gen, sizeof(jit_float64));
jit_memcpy(ptr, &float64_value, sizeof(float64_value));
x86_fld(inst, ptr, 1);
}
}
}
break;
case JIT_TYPE_NFLOAT:
{
jit_nfloat nfloat_value;
nfloat_value = jit_value_get_nfloat_constant(value);
if(IS_WORD_REG(reg) && sizeof(jit_nfloat) == sizeof(jit_float64))
{
union
{
jit_nfloat nfloat_value;
jit_int int_value[2];
} un;
un.nfloat_value = nfloat_value;
x86_mov_reg_imm(inst, _jit_reg_info[reg].cpu_reg,
un.int_value[0]);
x86_mov_reg_imm(inst, _jit_reg_info[other_reg].cpu_reg,
un.int_value[1]);
}
else
{
if(nfloat_value == (jit_nfloat) 0.0)
{
x86_fldz(inst);
}
else if(nfloat_value == (jit_nfloat) 1.0)
{
x86_fld1(inst);
}
else
{
ptr = _jit_gen_alloc(gen, sizeof(jit_nfloat));
jit_memcpy(ptr, &nfloat_value, sizeof(nfloat_value));
if(sizeof(jit_nfloat) == sizeof(jit_float64))
{
x86_fld(inst, ptr, 1);
}
else
{
x86_fld80_mem(inst, ptr);
}
}
}
}
break;
}
}
else if(value->in_register || value->in_global_register)
{
if(value->in_register)
{
src_reg = value->reg;
if(other_reg >= 0)
{
other_src_reg = jit_reg_other_reg(src_reg);
}
else
{
other_src_reg = -1;
}
}
else
{
src_reg = value->global_reg;
other_src_reg = -1;
}
switch(type->kind)
{
#if 0
case JIT_TYPE_SBYTE:
{
x86_widen_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 1, 0);
}
break;
case JIT_TYPE_UBYTE:
{
x86_widen_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 0, 0);
}
break;
case JIT_TYPE_SHORT:
{
x86_widen_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 1, 1);
}
break;
case JIT_TYPE_USHORT:
{
x86_widen_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 0, 1);
}
break;
#else
case JIT_TYPE_SBYTE:
case JIT_TYPE_UBYTE:
case JIT_TYPE_SHORT:
case JIT_TYPE_USHORT:
#endif
case JIT_TYPE_INT:
case JIT_TYPE_UINT:
{
x86_mov_reg_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 4);
}
break;
case JIT_TYPE_LONG:
case JIT_TYPE_ULONG:
{
#ifdef JIT_NATIVE_INT64
x86_mov_reg_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 8);
#else
x86_mov_reg_reg(inst, _jit_reg_info[reg].cpu_reg,
_jit_reg_info[src_reg].cpu_reg, 4);
x86_mov_reg_reg(inst, _jit_reg_info[other_reg].cpu_reg,
_jit_reg_info[other_src_reg].cpu_reg, 4);
#endif
}
break;
case JIT_TYPE_FLOAT32:
case JIT_TYPE_FLOAT64:
case JIT_TYPE_NFLOAT:
{
if(!IS_WORD_REG(reg))
{
x86_fld_reg(inst, fp_stack_index(gen, src_reg));
}
}
break;
}
}
else
{
/* Fix the position of the value in the stack frame */
_jit_gen_fix_value(value);
offset = (int)(value->frame_offset);
/* Load the value into the specified register */
switch(type->kind)
{
case JIT_TYPE_SBYTE:
{
x86_widen_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 1, 0);
}
break;
case JIT_TYPE_UBYTE:
{
x86_widen_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 0, 0);
}
break;
case JIT_TYPE_SHORT:
{
x86_widen_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 1, 1);
}
break;
case JIT_TYPE_USHORT:
{
x86_widen_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 0, 1);
}
break;
case JIT_TYPE_INT:
case JIT_TYPE_UINT:
{
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 4);
}
break;
case JIT_TYPE_LONG:
case JIT_TYPE_ULONG:
{
#ifdef JIT_NATIVE_INT64
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 8);
#else
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 4);
x86_mov_reg_membase(inst, _jit_reg_info[other_reg].cpu_reg,
X86_EBP, offset + 4, 4);
#endif
}
break;
case JIT_TYPE_FLOAT32:
{
if(IS_WORD_REG(reg))
{
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 4);
}
else
{
x86_fld_membase(inst, X86_EBP, offset, 0);
}
}
break;
case JIT_TYPE_FLOAT64:
{
if(IS_WORD_REG(reg))
{
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 4);
x86_mov_reg_membase(inst, _jit_reg_info[other_reg].cpu_reg,
X86_EBP, offset + 4, 4);
}
else
{
x86_fld_membase(inst, X86_EBP, offset, 1);
}
}
break;
case JIT_TYPE_NFLOAT:
{
if(IS_WORD_REG(reg) && sizeof(jit_nfloat) == sizeof(jit_float64))
{
x86_mov_reg_membase(inst, _jit_reg_info[reg].cpu_reg,
X86_EBP, offset, 4);
x86_mov_reg_membase(inst, _jit_reg_info[other_reg].cpu_reg,
X86_EBP, offset + 4, 4);
}
else if(sizeof(jit_nfloat) == sizeof(jit_float64))
{
x86_fld_membase(inst, X86_EBP, offset, 1);
}
else
{
x86_fld80_membase(inst, X86_EBP, offset);
}
}
break;
}
}
/* End the code output process */
jit_cache_end_output();
}
void _jit_gen_spill_global(jit_gencode_t gen, int reg, jit_value_t value)
{
jit_cache_setup_output(16);
if(value)
{
_jit_gen_fix_value(value);
x86_mov_membase_reg(inst,
X86_EBP, value->frame_offset,
_jit_reg_info[value->global_reg].cpu_reg, sizeof(void *));
}
else
{
x86_push_reg(inst, _jit_reg_info[reg].cpu_reg);
}
jit_cache_end_output();
}
void _jit_gen_load_global(jit_gencode_t gen, int reg, jit_value_t value)
{
jit_cache_setup_output(16);
if(value)
{
x86_mov_reg_membase(inst,
_jit_reg_info[value->global_reg].cpu_reg,
X86_EBP, value->frame_offset, sizeof(void *));
}
else
{
x86_pop_reg(inst, _jit_reg_info[reg].cpu_reg);
}
jit_cache_end_output();
}
void _jit_gen_fix_value(jit_value_t value)
{
if(!(value->has_frame_offset) && !(value->is_constant))
{
jit_nint size = (jit_nint)(ROUND_STACK(jit_type_get_size(value->type)));
value->block->func->builder->frame_size += size;
value->frame_offset = -(value->block->func->builder->frame_size);
value->has_frame_offset = 1;
}
}
/*
* Set a register value based on a condition code.
*/
static unsigned char *setcc_reg
(unsigned char *inst, int reg, int cond, int is_signed)
{
if(reg == X86_EAX || reg == X86_EBX || reg == X86_ECX || reg == X86_EDX)
{
/* Use a SETcc instruction if we have a basic register */
x86_set_reg(inst, cond, reg, is_signed);
x86_widen_reg(inst, reg, reg, 0, 0);
}
else
{
/* The register is not useable as an 8-bit destination */
unsigned char *patch1, *patch2;
patch1 = inst;
x86_branch8(inst, cond, 0, is_signed);
x86_clear_reg(inst, reg);
patch2 = inst;
x86_jump8(inst, 0);
x86_patch(patch1, inst);
x86_mov_reg_imm(inst, reg, 1);
x86_patch(patch2, inst);
}
return inst;
}
/*
* Get the long form of a branch opcode.
*/
static int long_form_branch(int opcode)
{
if(opcode == 0xEB)
{
return 0xE9;
}
else
{
return opcode + 0x0F10;
}
}
/*
* Output a branch instruction.
*/
static unsigned char *output_branch
(jit_function_t func, unsigned char *inst, int opcode, jit_insn_t insn)
{
jit_block_t block;
int offset;
if((insn->flags & JIT_INSN_VALUE1_IS_LABEL) != 0)
{
/* "address_of_label" instruction */
block = jit_block_from_label(func, (jit_label_t)(insn->value1));
}
else
{
block = jit_block_from_label(func, (jit_label_t)(insn->dest));
}
if(!block)
{
return inst;
}
if(block->address)
{
/* We already know the address of the block */
offset = ((unsigned char *)(block->address)) - (inst + 2);
if(x86_is_imm8(offset))
{
/* We can output a short-form backwards branch */
*inst++ = (unsigned char)opcode;
*inst++ = (unsigned char)offset;
}
else
{
/* We need to output a long-form backwards branch */
offset -= 3;
opcode = long_form_branch(opcode);
if(opcode < 256)
{
*inst++ = (unsigned char)opcode;
}
else
{
*inst++ = (unsigned char)(opcode >> 8);
*inst++ = (unsigned char)opcode;
--offset;
}
x86_imm_emit32(inst, offset);
}
}
else
{
/* Output a placeholder and record on the block's fixup list */
opcode = long_form_branch(opcode);
if(opcode < 256)
{
*inst++ = (unsigned char)opcode;
}
else
{
*inst++ = (unsigned char)(opcode >> 8);
*inst++ = (unsigned char)opcode;
}
x86_imm_emit32(inst, (int)(block->fixup_list));
block->fixup_list = (void *)(inst - 4);
}
return inst;
}
/*
* Jump to the current function's epilog.
*/
static unsigned char *
jump_to_epilog(jit_gencode_t gen, unsigned char *inst, jit_block_t block)
{
/* If the epilog is the next thing that we will output,
then fall through to the epilog directly */
if(_jit_block_is_final(block))
{
return inst;
}
/* Output a placeholder for the jump and add it to the fixup list */
*inst++ = (unsigned char)0xE9;
x86_imm_emit32(inst, (int)(gen->epilog_fixup));
gen->epilog_fixup = (void *)(inst - 4);
return inst;
}
/*
* Throw a builtin exception.
*/
static unsigned char *
throw_builtin(unsigned char *inst, jit_function_t func, int type)
{
/* We need to update "catch_pc" if we have a "try" block */
if(func->builder->setjmp_value != 0)
{
_jit_gen_fix_value(func->builder->setjmp_value);
if(func->builder->position_independent)
{
x86_call_imm(inst, 0);
x86_pop_membase(inst, X86_EBP,
func->builder->setjmp_value->frame_offset
+ jit_jmp_catch_pc_offset);
}
else
{
int pc = (int) inst;
x86_mov_membase_imm(inst, X86_EBP,
func->builder->setjmp_value->frame_offset
+ jit_jmp_catch_pc_offset, pc, 4);
}
}
/* Push the exception type onto the stack */
x86_push_imm(inst, type);
/* Call the "jit_exception_builtin" function, which will never return */
x86_call_code(inst, jit_exception_builtin);
return inst;
}
/*
* Copy a block of memory that has a specific size. Other than
* the parameter pointers, all registers must be unused at this point.
*/
static unsigned char *memory_copy
(jit_gencode_t gen, unsigned char *inst, int dreg, jit_nint doffset,
int sreg, jit_nint soffset, jit_nuint size)
{
int temp_reg = get_temp_reg(dreg, sreg, -1);
if(size <= 4 * sizeof(void *))
{
/* Use direct copies to copy the memory */
int offset = 0;
while(size >= sizeof(void *))
{
x86_mov_reg_membase(inst, temp_reg, sreg,
soffset + offset, sizeof(void *));
x86_mov_membase_reg(inst, dreg, doffset + offset,
temp_reg, sizeof(void *));
size -= sizeof(void *);
offset += sizeof(void *);
}
#ifdef JIT_NATIVE_INT64
if(size >= 4)
{
x86_mov_reg_membase(inst, temp_reg, sreg, soffset + offset, 4);
x86_mov_membase_reg(inst, dreg, doffset + offset, temp_reg, 4);
size -= 4;
offset += 4;
}
#endif
if(size >= 2)
{
x86_mov_reg_membase(inst, temp_reg, sreg, soffset + offset, 2);
x86_mov_membase_reg(inst, dreg, doffset + offset, temp_reg, 2);
size -= 2;
offset += 2;
}
if(size >= 1)
{
/* We assume that temp_reg is EAX, ECX, or EDX, which it
should be after calling "get_temp_reg" */
x86_mov_reg_membase(inst, temp_reg, sreg, soffset + offset, 1);
x86_mov_membase_reg(inst, dreg, doffset + offset, temp_reg, 1);
}
}
else
{
/* Call out to "jit_memcpy" to effect the copy */
x86_push_imm(inst, size);
if(soffset == 0)
{
x86_push_reg(inst, sreg);
}
else
{
x86_lea_membase(inst, temp_reg, sreg, soffset);
x86_push_reg(inst, temp_reg);
}
if(dreg != X86_ESP)
{
if(doffset == 0)
{
x86_push_reg(inst, dreg);
}
else
{
x86_lea_membase(inst, temp_reg, dreg, doffset);
x86_push_reg(inst, temp_reg);
}
}
else
{
/* Copying a structure value onto the stack */
x86_lea_membase(inst, temp_reg, X86_ESP,
doffset + 2 * sizeof(void *));
x86_push_reg(inst, temp_reg);
}
x86_call_code(inst, jit_memcpy);
x86_alu_reg_imm(inst, X86_ADD, X86_ESP, 3 * sizeof(void *));
}
return inst;
}
#define TODO() \
do { \
fprintf(stderr, "TODO at %s, %d\n", __FILE__, (int)__LINE__); \
} while (0)
void _jit_gen_insn(jit_gencode_t gen, jit_function_t func,
jit_block_t block, jit_insn_t insn)
{
switch(insn->opcode)
{
#define JIT_INCLUDE_RULES
#include "jit-rules-x86.inc"
#undef JIT_INCLUDE_RULES
default:
{
fprintf(stderr, "TODO(%x) at %s, %d\n",
(int)(insn->opcode), __FILE__, (int)__LINE__);
}
break;
}
}
void _jit_gen_start_block(jit_gencode_t gen, jit_block_t block)
{
void **fixup;
void **next;
/* Set the address of this block */
block->address = (void *)(gen->ptr);
/* If this block has pending fixups, then apply them now */
fixup = (void **)(block->fixup_list);
while(fixup != 0)
{
next = (void **)(fixup[0]);
fixup[0] = (void *)
(((jit_nint)(block->address)) - ((jit_nint)fixup) - 4);
fixup = next;
}
block->fixup_list = 0;
fixup = (void**)(block->fixup_absolute_list);
while(fixup != 0)
{
next = (void **)(fixup[0]);
fixup[0] = (void *)((jit_nint)(block->address));
fixup = next;
}
block->fixup_absolute_list = 0;
}
void _jit_gen_end_block(jit_gencode_t gen, jit_block_t block)
{
/* Nothing to do here for x86 */
}
int _jit_gen_is_global_candidate(jit_type_t type)
{
switch(jit_type_remove_tags(type)->kind)
{
case JIT_TYPE_INT:
case JIT_TYPE_UINT:
case JIT_TYPE_NINT:
case JIT_TYPE_NUINT:
case JIT_TYPE_PTR:
case JIT_TYPE_SIGNATURE: return 1;
}
return 0;
}
int
_jit_reg_get_pair(jit_type_t type, int reg)
{
type = jit_type_normalize(type);
if(type)
{
if(type->kind == JIT_TYPE_LONG || type->kind == JIT_TYPE_ULONG)
{
return jit_reg_other_reg(reg);
}
}
return -1;
}
#endif /* JIT_BACKEND_X86 */