You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

717 lines
24 KiB

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "py/compile.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#if MICROPY_HW_ENABLE_USB
#include "irq.h"
#include "usb.h"
#endif
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "genhdr/mpversion.h"
pyexec_mode_kind_t pyexec_mode_kind = PYEXEC_MODE_FRIENDLY_REPL;
int pyexec_system_exit = 0;
#if MICROPY_REPL_INFO
STATIC bool repl_display_debugging_info = 0;
#endif
#define EXEC_FLAG_PRINT_EOF (1)
#define EXEC_FLAG_ALLOW_DEBUGGING (2)
#define EXEC_FLAG_IS_REPL (4)
#define EXEC_FLAG_SOURCE_IS_RAW_CODE (8)
#define EXEC_FLAG_SOURCE_IS_VSTR (16)
#define EXEC_FLAG_SOURCE_IS_FILENAME (32)
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
#define EXEC_FLAG_SOURCE_IS_READER (64)
// parses, compiles and executes the code in the lexer
// frees the lexer before returning
// EXEC_FLAG_PRINT_EOF prints 2 EOF chars: 1 after normal output, 1 after exception output
// EXEC_FLAG_ALLOW_DEBUGGING allows debugging info to be printed after executing the code
// EXEC_FLAG_IS_REPL is used for REPL inputs (flag passed on to mp_compile)
STATIC int parse_compile_execute(const void *source, mp_parse_input_kind_t input_kind, int exec_flags) {
int ret = 0;
#if MICROPY_REPL_INFO
uint32_t start = 0;
#endif
#ifdef MICROPY_BOARD_BEFORE_PYTHON_EXEC
MICROPY_BOARD_BEFORE_PYTHON_EXEC(input_kind, exec_flags);
#endif
// by default a SystemExit exception returns 0
pyexec_system_exit = 0;
nlr_buf_t nlr;
nlr.ret_val = NULL;
if (nlr_push(&nlr) == 0) {
mp_obj_t module_fun;
#if MICROPY_MODULE_FROZEN_MPY
if (exec_flags & EXEC_FLAG_SOURCE_IS_RAW_CODE) {
// source is a raw_code object, create the function
module_fun = mp_make_function_from_raw_code(source, MP_OBJ_NULL, MP_OBJ_NULL);
} else
#endif
{
#if MICROPY_ENABLE_COMPILER
mp_lexer_t *lex;
if (exec_flags & EXEC_FLAG_SOURCE_IS_VSTR) {
const vstr_t *vstr = source;
lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, vstr->buf, vstr->len, 0);
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
} else if (exec_flags & EXEC_FLAG_SOURCE_IS_READER) {
lex = mp_lexer_new(MP_QSTR__lt_stdin_gt_, *(mp_reader_t *)source);
} else if (exec_flags & EXEC_FLAG_SOURCE_IS_FILENAME) {
lex = mp_lexer_new_from_file(source);
} else {
lex = (mp_lexer_t *)source;
}
// source is a lexer, parse and compile the script
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
module_fun = mp_compile(&parse_tree, source_name, exec_flags & EXEC_FLAG_IS_REPL);
#else
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("script compilation not supported"));
#endif
}
// execute code
mp_hal_set_interrupt_char(CHAR_CTRL_C); // allow ctrl-C to interrupt us
#if MICROPY_REPL_INFO
start = mp_hal_ticks_ms();
#endif
mp_call_function_0(module_fun);
mp_hal_set_interrupt_char(-1); // disable interrupt
mp_handle_pending(true); // handle any pending exceptions (and any callbacks)
nlr_pop();
ret = 1;
if (exec_flags & EXEC_FLAG_PRINT_EOF) {
mp_hal_stdout_tx_strn("\x04", 1);
}
} else {
// uncaught exception
mp_hal_set_interrupt_char(-1); // disable interrupt
mp_handle_pending(false); // clear any pending exceptions (and run any callbacks)
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
if (exec_flags & EXEC_FLAG_SOURCE_IS_READER) {
const mp_reader_t *reader = source;
reader->close(reader->data);
}
// print EOF after normal output
if (exec_flags & EXEC_FLAG_PRINT_EOF) {
mp_hal_stdout_tx_strn("\x04", 1);
}
// check for SystemExit
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_SystemExit))) {
// at the moment, the value of SystemExit is unused
ret = pyexec_system_exit;
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
ret = 0;
}
}
#if MICROPY_REPL_INFO
// display debugging info if wanted
if ((exec_flags & EXEC_FLAG_ALLOW_DEBUGGING) && repl_display_debugging_info) {
mp_uint_t ticks = mp_hal_ticks_ms() - start; // TODO implement a function that does this properly
printf("took " UINT_FMT " ms\n", ticks);
// qstr info
{
size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n "
"n_str_data_bytes=%u\n n_total_bytes=%u\n",
(unsigned)n_pool, (unsigned)n_qstr, (unsigned)n_str_data_bytes, (unsigned)n_total_bytes);
}
#if MICROPY_ENABLE_GC
// run collection and print GC info
gc_collect();
gc_dump_info();
#endif
}
#endif
if (exec_flags & EXEC_FLAG_PRINT_EOF) {
mp_hal_stdout_tx_strn("\x04", 1);
}
#ifdef MICROPY_BOARD_AFTER_PYTHON_EXEC
MICROPY_BOARD_AFTER_PYTHON_EXEC(input_kind, exec_flags, nlr.ret_val, &ret);
#endif
return ret;
}
#if MICROPY_ENABLE_COMPILER
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
// This can be configured by a port (and even configured to a function to be
// computed dynamically) to indicate the maximum number of bytes that can be
// held in the stdin buffer.
#ifndef MICROPY_REPL_STDIN_BUFFER_MAX
#define MICROPY_REPL_STDIN_BUFFER_MAX (256)
#endif
typedef struct _mp_reader_stdin_t {
bool eof;
uint16_t window_max;
uint16_t window_remain;
} mp_reader_stdin_t;
STATIC mp_uint_t mp_reader_stdin_readbyte(void *data) {
mp_reader_stdin_t *reader = (mp_reader_stdin_t *)data;
if (reader->eof) {
return MP_READER_EOF;
}
int c = mp_hal_stdin_rx_chr();
if (c == CHAR_CTRL_C || c == CHAR_CTRL_D) {
reader->eof = true;
mp_hal_stdout_tx_strn("\x04", 1); // indicate end to host
if (c == CHAR_CTRL_C) {
#if MICROPY_KBD_EXCEPTION
MP_STATE_VM(mp_kbd_exception).traceback_data = NULL;
nlr_raise(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception)));
#else
mp_raise_type(&mp_type_KeyboardInterrupt);
#endif
} else {
return MP_READER_EOF;
}
}
if (--reader->window_remain == 0) {
mp_hal_stdout_tx_strn("\x01", 1); // indicate window available to host
reader->window_remain = reader->window_max;
}
return c;
}
STATIC void mp_reader_stdin_close(void *data) {
mp_reader_stdin_t *reader = (mp_reader_stdin_t *)data;
if (!reader->eof) {
reader->eof = true;
mp_hal_stdout_tx_strn("\x04", 1); // indicate end to host
for (;;) {
int c = mp_hal_stdin_rx_chr();
if (c == CHAR_CTRL_C || c == CHAR_CTRL_D) {
break;
}
}
}
}
STATIC void mp_reader_new_stdin(mp_reader_t *reader, mp_reader_stdin_t *reader_stdin, uint16_t buf_max) {
// Make flow-control window half the buffer size, and indicate to the host that 2x windows are
// free (sending the window size implicitly indicates that a window is free, and then the 0x01
// indicates that another window is free).
size_t window = buf_max / 2;
char reply[3] = { window & 0xff, window >> 8, 0x01 };
mp_hal_stdout_tx_strn(reply, sizeof(reply));
reader_stdin->eof = false;
reader_stdin->window_max = window;
reader_stdin->window_remain = window;
reader->data = reader_stdin;
reader->readbyte = mp_reader_stdin_readbyte;
reader->close = mp_reader_stdin_close;
}
STATIC int do_reader_stdin(int c) {
if (c != 'A') {
// Unsupported command.
mp_hal_stdout_tx_strn("R\x00", 2);
return 0;
}
// Indicate reception of command.
mp_hal_stdout_tx_strn("R\x01", 2);
mp_reader_t reader;
mp_reader_stdin_t reader_stdin;
mp_reader_new_stdin(&reader, &reader_stdin, MICROPY_REPL_STDIN_BUFFER_MAX);
int exec_flags = EXEC_FLAG_PRINT_EOF | EXEC_FLAG_SOURCE_IS_READER;
return parse_compile_execute(&reader, MP_PARSE_FILE_INPUT, exec_flags);
}
#if MICROPY_REPL_EVENT_DRIVEN
typedef struct _repl_t {
// This structure originally also held current REPL line,
// but it was moved to MP_STATE_VM(repl_line) as containing
// root pointer. Still keep structure in case more state
// will be added later.
// vstr_t line;
bool cont_line;
bool paste_mode;
} repl_t;
repl_t repl;
STATIC int pyexec_raw_repl_process_char(int c);
STATIC int pyexec_friendly_repl_process_char(int c);
void pyexec_event_repl_init(void) {
MP_STATE_VM(repl_line) = vstr_new(32);
repl.cont_line = false;
repl.paste_mode = false;
// no prompt before printing friendly REPL banner or entering raw REPL
readline_init(MP_STATE_VM(repl_line), "");
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
pyexec_raw_repl_process_char(CHAR_CTRL_A);
} else {
pyexec_friendly_repl_process_char(CHAR_CTRL_B);
}
}
STATIC int pyexec_raw_repl_process_char(int c) {
if (c == CHAR_CTRL_A) {
// reset raw REPL
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
if (vstr_len(MP_STATE_VM(repl_line)) == 2 && vstr_str(MP_STATE_VM(repl_line))[0] == CHAR_CTRL_E) {
int ret = do_reader_stdin(vstr_str(MP_STATE_VM(repl_line))[1]);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
goto reset;
}
mp_hal_stdout_tx_str("raw REPL; CTRL-B to exit\r\n");
goto reset;
} else if (c == CHAR_CTRL_B) {
// change to friendly REPL
pyexec_mode_kind = PYEXEC_MODE_FRIENDLY_REPL;
vstr_reset(MP_STATE_VM(repl_line));
repl.cont_line = false;
repl.paste_mode = false;
pyexec_friendly_repl_process_char(CHAR_CTRL_B);
return 0;
} else if (c == CHAR_CTRL_C) {
// clear line
vstr_reset(MP_STATE_VM(repl_line));
return 0;
} else if (c == CHAR_CTRL_D) {
// input finished
} else {
// let through any other raw 8-bit value
vstr_add_byte(MP_STATE_VM(repl_line), c);
return 0;
}
// indicate reception of command
mp_hal_stdout_tx_str("OK");
if (MP_STATE_VM(repl_line)->len == 0) {
// exit for a soft reset
mp_hal_stdout_tx_str("\r\n");
vstr_clear(MP_STATE_VM(repl_line));
return PYEXEC_FORCED_EXIT;
}
int ret = parse_compile_execute(MP_STATE_VM(repl_line), MP_PARSE_FILE_INPUT, EXEC_FLAG_PRINT_EOF | EXEC_FLAG_SOURCE_IS_VSTR);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
reset:
vstr_reset(MP_STATE_VM(repl_line));
mp_hal_stdout_tx_str(">");
return 0;
}
STATIC int pyexec_friendly_repl_process_char(int c) {
if (repl.paste_mode) {
if (c == CHAR_CTRL_C) {
// cancel everything
mp_hal_stdout_tx_str("\r\n");
goto input_restart;
} else if (c == CHAR_CTRL_D) {
// end of input
mp_hal_stdout_tx_str("\r\n");
int ret = parse_compile_execute(MP_STATE_VM(repl_line), MP_PARSE_FILE_INPUT, EXEC_FLAG_ALLOW_DEBUGGING | EXEC_FLAG_IS_REPL | EXEC_FLAG_SOURCE_IS_VSTR);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
goto input_restart;
} else {
// add char to buffer and echo
vstr_add_byte(MP_STATE_VM(repl_line), c);
if (c == '\r') {
mp_hal_stdout_tx_str("\r\n=== ");
} else {
char buf[1] = {c};
mp_hal_stdout_tx_strn(buf, 1);
}
return 0;
}
}
int ret = readline_process_char(c);
if (!repl.cont_line) {
if (ret == CHAR_CTRL_A) {
// change to raw REPL
pyexec_mode_kind = PYEXEC_MODE_RAW_REPL;
mp_hal_stdout_tx_str("\r\n");
pyexec_raw_repl_process_char(CHAR_CTRL_A);
return 0;
} else if (ret == CHAR_CTRL_B) {
// reset friendly REPL
mp_hal_stdout_tx_str("\r\n");
mp_hal_stdout_tx_str("MicroPython " MICROPY_GIT_TAG " on " MICROPY_BUILD_DATE "; " MICROPY_HW_BOARD_NAME " with " MICROPY_HW_MCU_NAME "\r\n");
#if MICROPY_PY_BUILTINS_HELP
mp_hal_stdout_tx_str("Type \"help()\" for more information.\r\n");
#endif
goto input_restart;
} else if (ret == CHAR_CTRL_C) {
// break
mp_hal_stdout_tx_str("\r\n");
goto input_restart;
} else if (ret == CHAR_CTRL_D) {
// exit for a soft reset
mp_hal_stdout_tx_str("\r\n");
vstr_clear(MP_STATE_VM(repl_line));
return PYEXEC_FORCED_EXIT;
} else if (ret == CHAR_CTRL_E) {
// paste mode
mp_hal_stdout_tx_str("\r\npaste mode; Ctrl-C to cancel, Ctrl-D to finish\r\n=== ");
vstr_reset(MP_STATE_VM(repl_line));
repl.paste_mode = true;
return 0;
}
if (ret < 0) {
return 0;
}
if (!mp_repl_continue_with_input(vstr_null_terminated_str(MP_STATE_VM(repl_line)))) {
goto exec;
}
vstr_add_byte(MP_STATE_VM(repl_line), '\n');
repl.cont_line = true;
readline_note_newline("... ");
return 0;
} else {
if (ret == CHAR_CTRL_C) {
// cancel everything
mp_hal_stdout_tx_str("\r\n");
repl.cont_line = false;
goto input_restart;
} else if (ret == CHAR_CTRL_D) {
// stop entering compound statement
goto exec;
}
if (ret < 0) {
return 0;
}
if (mp_repl_continue_with_input(vstr_null_terminated_str(MP_STATE_VM(repl_line)))) {
vstr_add_byte(MP_STATE_VM(repl_line), '\n');
readline_note_newline("... ");
return 0;
}
exec:;
int ret = parse_compile_execute(MP_STATE_VM(repl_line), MP_PARSE_SINGLE_INPUT, EXEC_FLAG_ALLOW_DEBUGGING | EXEC_FLAG_IS_REPL | EXEC_FLAG_SOURCE_IS_VSTR);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
input_restart:
vstr_reset(MP_STATE_VM(repl_line));
repl.cont_line = false;
repl.paste_mode = false;
readline_init(MP_STATE_VM(repl_line), ">>> ");
return 0;
}
}
uint8_t pyexec_repl_active;
int pyexec_event_repl_process_char(int c) {
pyexec_repl_active = 1;
int res;
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
res = pyexec_raw_repl_process_char(c);
} else {
res = pyexec_friendly_repl_process_char(c);
}
pyexec_repl_active = 0;
return res;
}
#else // MICROPY_REPL_EVENT_DRIVEN
int pyexec_raw_repl(void) {
vstr_t line;
vstr_init(&line, 32);
raw_repl_reset:
mp_hal_stdout_tx_str("raw REPL; CTRL-B to exit\r\n");
for (;;) {
vstr_reset(&line);
mp_hal_stdout_tx_str(">");
for (;;) {
int c = mp_hal_stdin_rx_chr();
if (c == CHAR_CTRL_A) {
// reset raw REPL
lib/utils/pyexec: Add stdin-reader on raw REPL with flow control. Background: the friendly/normal REPL is intended for human use whereas the raw REPL is for computer use/automation. Raw REPL is used for things like pyboard.py script_to_run.py. The normal REPL has built-in flow control because it echos back the characters. That&#39;s not so with raw REPL and flow control is just implemented by rate limiting the amount of data that goes in. Currently it&#39;s fixed at 256 byte chunks every 10ms. This is sometimes too fast for slow MCUs or systems with small stdin buffers. It&#39;s also too slow for a lot of higher-end MCUs, ie it could be a lot faster. This commit adds a new raw REPL mode which includes flow control: the device will echo back a character after a certain number of bytes are sent to the host, and the host can use this to regulate the data going out to the device. The amount of characters is controlled by the device and sent to the host before communication starts. This flow control allows getting the maximum speed out of a serial link, regardless of the link or the device at the other end. Also, this new raw REPL mode parses and compiles the incoming data as it comes in. It does this by creating a &#34;stdin reader&#34; object which is then passed to the lexer. The lexer requests bytes from this &#34;stdin reader&#34; which retrieves bytes from the host, and does flow control. What this means is that no memory is used to store the script (in the existing raw REPL mode the device needs a big buffer to read in the script before it can pass it on to the lexer/parser/compiler). The only memory needed on the device is enough to parse and compile. Finally, it would be possible to extend this new raw REPL to allow bytecode (.mpy files) to be sent as well as text mode scripts (but that&#39;s not done in this commit). Some results follow. The test was to send a large 33k script that contains mostly comments and then prints out the heap, run via pyboard.py large.py. On PYBD-SF6, prior to this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 34464, free: 357728 No. of 1-blocks: 12, 2-blocks: 2, max blk sz: 2075, max free sz: 22345 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=B........h==h=========================================== 00800: ================================================================ 00c00: ================================================================ 01000: ================================================================ 01400: ================================================================ 01800: ================================================================ 01c00: ================================================================ 02000: ================================================================ 02400: ================================================================ 02800: ================================================================ 02c00: ================================================================ 03000: ================================================================ 03400: ================================================================ 03800: ================================================================ 03c00: ================================================================ 04000: ================================================================ 04400: ================================================================ 04800: ================================================================ 04c00: ================================================================ 05000: ================================================================ 05400: ================================================================ 05800: ================================================================ 05c00: ================================================================ 06000: ================================================================ 06400: ================================================================ 06800: ================================================================ 06c00: ================================================================ 07000: ================================================================ 07400: ================================================================ 07800: ================================================================ 07c00: ================================================================ 08000: ================================================================ 08400: ===============================================.....h==......... (349 lines all free) (the big blob of used memory is the large script). Same but with this PR: $ ./pyboard.py large.py stack: 524 out of 23552 GC: total: 392192, used: 1296, free: 390896 No. of 1-blocks: 12, 2-blocks: 3, max blk sz: 40, max free sz: 24420 GC memory layout; from 2001a3f0: 00000: h=hhhh=======================================hhBShShh==h=======h 00400: =====hh=h=B......h==.....h==.................................... (381 lines all free) The only thing in RAM is the compiled script (and some other unrelated items). Time to download before this PR: 1438ms, data rate: 230,799 bits/sec. Time to download with this PR: 119ms, data rate: 2,788,991 bits/sec. So it&#39;s more than 10 times faster, and uses significantly less RAM. Results are similar on other boards. On an stm32 board that connects via UART only at 115200 baud, the data rate goes from 80kbit/sec to 113kbit/sec, so gets close to saturating the UART link without loss of data. The new raw REPL mode also supports a single ctrl-C to break out of this flow-control mode, so that a ctrl-C can always get back to a known state. It&#39;s also backwards compatible with the original raw REPL mode, which is still supported with the same sequence of commands. The new raw REPL mode is activated by ctrl-E, which gives an error on devices that do not support the new mode. Signed-off-by: Damien George &lt;damien@micropython.org&gt;
4 years ago
if (vstr_len(&line) == 2 && vstr_str(&line)[0] == CHAR_CTRL_E) {
int ret = do_reader_stdin(vstr_str(&line)[1]);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
vstr_reset(&line);
mp_hal_stdout_tx_str(">");
continue;
}
goto raw_repl_reset;
} else if (c == CHAR_CTRL_B) {
// change to friendly REPL
mp_hal_stdout_tx_str("\r\n");
vstr_clear(&line);
pyexec_mode_kind = PYEXEC_MODE_FRIENDLY_REPL;
return 0;
} else if (c == CHAR_CTRL_C) {
// clear line
vstr_reset(&line);
} else if (c == CHAR_CTRL_D) {
// input finished
break;
} else {
// let through any other raw 8-bit value
vstr_add_byte(&line, c);
}
}
// indicate reception of command
mp_hal_stdout_tx_str("OK");
if (line.len == 0) {
// exit for a soft reset
mp_hal_stdout_tx_str("\r\n");
vstr_clear(&line);
return PYEXEC_FORCED_EXIT;
}
int ret = parse_compile_execute(&line, MP_PARSE_FILE_INPUT, EXEC_FLAG_PRINT_EOF | EXEC_FLAG_SOURCE_IS_VSTR);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
}
}
int pyexec_friendly_repl(void) {
vstr_t line;
vstr_init(&line, 32);
friendly_repl_reset:
mp_hal_stdout_tx_str("MicroPython " MICROPY_GIT_TAG " on " MICROPY_BUILD_DATE "; " MICROPY_HW_BOARD_NAME " with " MICROPY_HW_MCU_NAME "\r\n");
#if MICROPY_PY_BUILTINS_HELP
mp_hal_stdout_tx_str("Type \"help()\" for more information.\r\n");
#endif
// to test ctrl-C
/*
{
uint32_t x[4] = {0x424242, 0xdeaddead, 0x242424, 0xdeadbeef};
for (;;) {
nlr_buf_t nlr;
printf("pyexec_repl: %p\n", x);
mp_hal_set_interrupt_char(CHAR_CTRL_C);
if (nlr_push(&nlr) == 0) {
for (;;) {
}
} else {
printf("break\n");
}
}
}
*/
for (;;) {
input_restart:
#if MICROPY_HW_ENABLE_USB
if (usb_vcp_is_enabled()) {
// If the user gets to here and interrupts are disabled then
// they'll never see the prompt, traceback etc. The USB REPL needs
// interrupts to be enabled or no transfers occur. So we try to
// do the user a favor and reenable interrupts.
if (query_irq() == IRQ_STATE_DISABLED) {
enable_irq(IRQ_STATE_ENABLED);
mp_hal_stdout_tx_str("MPY: enabling IRQs\r\n");
}
}
#endif
// If the GC is locked at this point there is no way out except a reset,
// so force the GC to be unlocked to help the user debug what went wrong.
if (MP_STATE_THREAD(gc_lock_depth) != 0) {
MP_STATE_THREAD(gc_lock_depth) = 0;
}
vstr_reset(&line);
int ret = readline(&line, ">>> ");
mp_parse_input_kind_t parse_input_kind = MP_PARSE_SINGLE_INPUT;
if (ret == CHAR_CTRL_A) {
// change to raw REPL
mp_hal_stdout_tx_str("\r\n");
vstr_clear(&line);
pyexec_mode_kind = PYEXEC_MODE_RAW_REPL;
return 0;
} else if (ret == CHAR_CTRL_B) {
// reset friendly REPL
mp_hal_stdout_tx_str("\r\n");
goto friendly_repl_reset;
} else if (ret == CHAR_CTRL_C) {
// break
mp_hal_stdout_tx_str("\r\n");
continue;
} else if (ret == CHAR_CTRL_D) {
// exit for a soft reset
mp_hal_stdout_tx_str("\r\n");
vstr_clear(&line);
return PYEXEC_FORCED_EXIT;
} else if (ret == CHAR_CTRL_E) {
// paste mode
mp_hal_stdout_tx_str("\r\npaste mode; Ctrl-C to cancel, Ctrl-D to finish\r\n=== ");
vstr_reset(&line);
for (;;) {
char c = mp_hal_stdin_rx_chr();
if (c == CHAR_CTRL_C) {
// cancel everything
mp_hal_stdout_tx_str("\r\n");
goto input_restart;
} else if (c == CHAR_CTRL_D) {
// end of input
mp_hal_stdout_tx_str("\r\n");
break;
} else {
// add char to buffer and echo
vstr_add_byte(&line, c);
if (c == '\r') {
mp_hal_stdout_tx_str("\r\n=== ");
} else {
mp_hal_stdout_tx_strn(&c, 1);
}
}
}
parse_input_kind = MP_PARSE_FILE_INPUT;
} else if (vstr_len(&line) == 0) {
continue;
} else {
// got a line with non-zero length, see if it needs continuing
while (mp_repl_continue_with_input(vstr_null_terminated_str(&line))) {
vstr_add_byte(&line, '\n');
ret = readline(&line, "... ");
if (ret == CHAR_CTRL_C) {
// cancel everything
mp_hal_stdout_tx_str("\r\n");
goto input_restart;
} else if (ret == CHAR_CTRL_D) {
// stop entering compound statement
break;
}
}
}
ret = parse_compile_execute(&line, parse_input_kind, EXEC_FLAG_ALLOW_DEBUGGING | EXEC_FLAG_IS_REPL | EXEC_FLAG_SOURCE_IS_VSTR);
if (ret & PYEXEC_FORCED_EXIT) {
return ret;
}
}
}
#endif // MICROPY_REPL_EVENT_DRIVEN
#endif // MICROPY_ENABLE_COMPILER
int pyexec_file(const char *filename) {
return parse_compile_execute(filename, MP_PARSE_FILE_INPUT, EXEC_FLAG_SOURCE_IS_FILENAME);
}
int pyexec_file_if_exists(const char *filename) {
#if MICROPY_MODULE_FROZEN
if (mp_frozen_stat(filename) == MP_IMPORT_STAT_FILE) {
return pyexec_frozen_module(filename);
}
#endif
if (mp_import_stat(filename) != MP_IMPORT_STAT_FILE) {
return 1; // success (no file is the same as an empty file executing without fail)
}
return pyexec_file(filename);
}
#if MICROPY_MODULE_FROZEN
int pyexec_frozen_module(const char *name) {
void *frozen_data;
int frozen_type = mp_find_frozen_module(name, strlen(name), &frozen_data);
switch (frozen_type) {
#if MICROPY_MODULE_FROZEN_STR
case MP_FROZEN_STR:
return parse_compile_execute(frozen_data, MP_PARSE_FILE_INPUT, 0);
#endif
#if MICROPY_MODULE_FROZEN_MPY
case MP_FROZEN_MPY:
return parse_compile_execute(frozen_data, MP_PARSE_FILE_INPUT, EXEC_FLAG_SOURCE_IS_RAW_CODE);
#endif
default:
printf("could not find module '%s'\n", name);
return false;
}
}
#endif
#if MICROPY_REPL_INFO
mp_obj_t pyb_set_repl_info(mp_obj_t o_value) {
repl_display_debugging_info = mp_obj_get_int(o_value);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_set_repl_info_obj, pyb_set_repl_info);
#endif