You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

866 lines
34 KiB

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include "py/emit.h"
#include "py/asmthumb.h"
#if MICROPY_EMIT_INLINE_THUMB
typedef enum {
// define rules with a compile function
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
PN_const_object, // special node for a constant, generic Python object
// define rules without a compile function
#define DEF_RULE(rule, comp, kind, ...)
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
} pn_kind_t;
struct _emit_inline_asm_t {
asm_thumb_t as;
uint16_t pass;
mp_obj_t *error_slot;
mp_uint_t max_num_labels;
qstr *label_lookup;
};
#if MICROPY_DYNAMIC_COMPILER
static inline bool emit_inline_thumb_allow_float(emit_inline_asm_t *emit) {
return MP_NATIVE_ARCH_ARMV7EMSP <= mp_dynamic_compiler.native_arch
&& mp_dynamic_compiler.native_arch <= MP_NATIVE_ARCH_ARMV7EMDP;
}
#else
static inline bool emit_inline_thumb_allow_float(emit_inline_asm_t *emit) {
return MICROPY_EMIT_INLINE_THUMB_FLOAT;
}
#endif
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static void emit_inline_thumb_error_msg(emit_inline_asm_t *emit, mp_rom_error_text_t msg) {
*emit->error_slot = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static void emit_inline_thumb_error_exc(emit_inline_asm_t *emit, mp_obj_t exc) {
*emit->error_slot = exc;
}
emit_inline_asm_t *emit_inline_thumb_new(mp_uint_t max_num_labels) {
emit_inline_asm_t *emit = m_new_obj(emit_inline_asm_t);
memset(&emit->as, 0, sizeof(emit->as));
mp_asm_base_init(&emit->as.base, max_num_labels);
emit->max_num_labels = max_num_labels;
emit->label_lookup = m_new(qstr, max_num_labels);
return emit;
}
void emit_inline_thumb_free(emit_inline_asm_t *emit) {
m_del(qstr, emit->label_lookup, emit->max_num_labels);
mp_asm_base_deinit(&emit->as.base, false);
m_del_obj(emit_inline_asm_t, emit);
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static void emit_inline_thumb_start_pass(emit_inline_asm_t *emit, pass_kind_t pass, mp_obj_t *error_slot) {
emit->pass = pass;
emit->error_slot = error_slot;
if (emit->pass == MP_PASS_CODE_SIZE) {
memset(emit->label_lookup, 0, emit->max_num_labels * sizeof(qstr));
}
mp_asm_base_start_pass(&emit->as.base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);
asm_thumb_entry(&emit->as, 0);
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static void emit_inline_thumb_end_pass(emit_inline_asm_t *emit, mp_uint_t type_sig) {
asm_thumb_exit(&emit->as);
asm_thumb_end_pass(&emit->as);
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static mp_uint_t emit_inline_thumb_count_params(emit_inline_asm_t *emit, mp_uint_t n_params, mp_parse_node_t *pn_params) {
if (n_params > 4) {
emit_inline_thumb_error_msg(emit, MP_ERROR_TEXT("can only have up to 4 parameters to Thumb assembly"));
return 0;
}
for (mp_uint_t i = 0; i < n_params; i++) {
if (!MP_PARSE_NODE_IS_ID(pn_params[i])) {
emit_inline_thumb_error_msg(emit, MP_ERROR_TEXT("parameters must be registers in sequence r0 to r3"));
return 0;
}
const char *p = qstr_str(MP_PARSE_NODE_LEAF_ARG(pn_params[i]));
if (!(strlen(p) == 2 && p[0] == 'r' && (mp_uint_t)p[1] == '0' + i)) {
emit_inline_thumb_error_msg(emit, MP_ERROR_TEXT("parameters must be registers in sequence r0 to r3"));
return 0;
}
}
return n_params;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static bool emit_inline_thumb_label(emit_inline_asm_t *emit, mp_uint_t label_num, qstr label_id) {
assert(label_num < emit->max_num_labels);
if (emit->pass == MP_PASS_CODE_SIZE) {
// check for duplicate label on first pass
for (uint i = 0; i < emit->max_num_labels; i++) {
if (emit->label_lookup[i] == label_id) {
return false;
}
}
}
emit->label_lookup[label_num] = label_id;
mp_asm_base_label_assign(&emit->as.base, label_num);
return true;
}
typedef struct _reg_name_t { byte reg;
byte name[3];
} reg_name_t;
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const reg_name_t reg_name_table[] = {
{0, "r0\0"},
{1, "r1\0"},
{2, "r2\0"},
{3, "r3\0"},
{4, "r4\0"},
{5, "r5\0"},
{6, "r6\0"},
{7, "r7\0"},
{8, "r8\0"},
{9, "r9\0"},
{10, "r10"},
{11, "r11"},
{12, "r12"},
{13, "r13"},
{14, "r14"},
{15, "r15"},
{10, "sl\0"},
{11, "fp\0"},
{13, "sp\0"},
{14, "lr\0"},
{15, "pc\0"},
};
#define MAX_SPECIAL_REGISTER_NAME_LENGTH 7
typedef struct _special_reg_name_t { byte reg;
char name[MAX_SPECIAL_REGISTER_NAME_LENGTH + 1];
} special_reg_name_t;
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const special_reg_name_t special_reg_name_table[] = {
{5, "IPSR"},
{17, "BASEPRI"},
};
// return empty string in case of error, so we can attempt to parse the string
// without a special check if it was in fact a string
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const char *get_arg_str(mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_ID(pn)) {
qstr qst = MP_PARSE_NODE_LEAF_ARG(pn);
return qstr_str(qst);
} else {
return "";
}
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static mp_uint_t get_arg_reg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, mp_uint_t max_reg) {
const char *reg_str = get_arg_str(pn);
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(reg_name_table); i++) {
const reg_name_t *r = &reg_name_table[i];
if (reg_str[0] == r->name[0]
&& reg_str[1] == r->name[1]
&& reg_str[2] == r->name[2]
&& (reg_str[2] == '\0' || reg_str[3] == '\0')) {
if (r->reg > max_reg) {
emit_inline_thumb_error_exc(emit,
mp_obj_new_exception_msg_varg(&mp_type_SyntaxError,
MP_ERROR_TEXT("'%s' expects at most r%d"), op, max_reg));
return 0;
} else {
return r->reg;
}
}
}
emit_inline_thumb_error_exc(emit,
mp_obj_new_exception_msg_varg(&mp_type_SyntaxError,
MP_ERROR_TEXT("'%s' expects a register"), op));
return 0;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static mp_uint_t get_arg_special_reg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
const char *reg_str = get_arg_str(pn);
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(special_reg_name_table); i++) {
const special_reg_name_t *r = &special_reg_name_table[i];
if (strcmp(r->name, reg_str) == 0) {
return r->reg;
}
}
emit_inline_thumb_error_exc(emit,
mp_obj_new_exception_msg_varg(&mp_type_SyntaxError,
MP_ERROR_TEXT("'%s' expects a special register"), op));
return 0;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static mp_uint_t get_arg_vfpreg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
const char *reg_str = get_arg_str(pn);
if (reg_str[0] == 's' && reg_str[1] != '\0') {
mp_uint_t regno = 0;
for (++reg_str; *reg_str; ++reg_str) {
mp_uint_t v = *reg_str;
if (!('0' <= v && v <= '9')) {
goto malformed;
}
regno = 10 * regno + v - '0';
}
if (regno > 31) {
emit_inline_thumb_error_exc(emit,
mp_obj_new_exception_msg_varg(&mp_type_SyntaxError,
MP_ERROR_TEXT("'%s' expects at most r%d"), op, 31));
return 0;
} else {
return regno;
}
}
malformed:
emit_inline_thumb_error_exc(emit,
mp_obj_new_exception_msg_varg(&mp_type_SyntaxError,
MP_ERROR_TEXT("'%s' expects an FPU register"), op));
return 0;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static mp_uint_t get_arg_reglist(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
// a register list looks like {r0, r1, r2} and is parsed as a Python set
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_brace)) {
goto bad_arg;
}
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 1); // should always be
pn = pns->nodes[0];
mp_uint_t reglist = 0;
if (MP_PARSE_NODE_IS_ID(pn)) {
// set with one element
reglist |= 1 << get_arg_reg(emit, op, pn, 15);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
pns = (mp_parse_node_struct_t *)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
// set with multiple elements
// get first element of set (we rely on get_arg_reg to catch syntax errors)
reglist |= 1 << get_arg_reg(emit, op, pns->nodes[0], 15);
// get tail elements (2nd, 3rd, ...)
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
// process rest of elements
for (int i = 0; i < n; i++) {
reglist |= 1 << get_arg_reg(emit, op, nodes[i], 15);
}
} else {
goto bad_arg;
}
} else {
goto bad_arg;
}
} else {
goto bad_arg;
}
return reglist;
bad_arg:
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects {r0, r1, ...}"), op));
return 0;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static uint32_t get_arg_i(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, uint32_t fit_mask) {
mp_obj_t o;
if (!mp_parse_node_get_int_maybe(pn, &o)) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects an integer"), op));
return 0;
}
uint32_t i = mp_obj_get_int_truncated(o);
if ((i & (~fit_mask)) != 0) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' integer 0x%x doesn't fit in mask 0x%x"), op, i, fit_mask));
return 0;
}
return i;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static bool get_arg_addr(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, mp_parse_node_t *pn_base, mp_parse_node_t *pn_offset) {
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_bracket)) {
goto bad_arg;
}
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
goto bad_arg;
}
pns = (mp_parse_node_struct_t *)pns->nodes[0];
if (MP_PARSE_NODE_STRUCT_NUM_NODES(pns) != 2) {
goto bad_arg;
}
*pn_base = pns->nodes[0];
*pn_offset = pns->nodes[1];
return true;
bad_arg:
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects an address of the form [a, b]"), op));
return false;
}
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static int get_arg_label(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
if (!MP_PARSE_NODE_IS_ID(pn)) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects a label"), op));
return 0;
}
qstr label_qstr = MP_PARSE_NODE_LEAF_ARG(pn);
for (uint i = 0; i < emit->max_num_labels; i++) {
if (emit->label_lookup[i] == label_qstr) {
return i;
}
}
// only need to have the labels on the last pass
if (emit->pass == MP_PASS_EMIT) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("label '%q' not defined"), label_qstr));
}
return 0;
}
typedef struct _cc_name_t { byte cc;
byte name[2];
} cc_name_t;
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const cc_name_t cc_name_table[] = {
{ ASM_THUMB_CC_EQ, "eq" },
{ ASM_THUMB_CC_NE, "ne" },
{ ASM_THUMB_CC_CS, "cs" },
{ ASM_THUMB_CC_CC, "cc" },
{ ASM_THUMB_CC_MI, "mi" },
{ ASM_THUMB_CC_PL, "pl" },
{ ASM_THUMB_CC_VS, "vs" },
{ ASM_THUMB_CC_VC, "vc" },
{ ASM_THUMB_CC_HI, "hi" },
{ ASM_THUMB_CC_LS, "ls" },
{ ASM_THUMB_CC_GE, "ge" },
{ ASM_THUMB_CC_LT, "lt" },
{ ASM_THUMB_CC_GT, "gt" },
{ ASM_THUMB_CC_LE, "le" },
};
typedef struct _format_4_op_t { byte op;
char name[3];
} format_4_op_t;
#define X(x) (((x) >> 4) & 0xff) // only need 1 byte to distinguish these ops
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const format_4_op_t format_4_op_table[] = {
{ X(ASM_THUMB_FORMAT_4_EOR), "eor" },
{ X(ASM_THUMB_FORMAT_4_LSL), "lsl" },
{ X(ASM_THUMB_FORMAT_4_LSR), "lsr" },
{ X(ASM_THUMB_FORMAT_4_ASR), "asr" },
{ X(ASM_THUMB_FORMAT_4_ADC), "adc" },
{ X(ASM_THUMB_FORMAT_4_SBC), "sbc" },
{ X(ASM_THUMB_FORMAT_4_ROR), "ror" },
{ X(ASM_THUMB_FORMAT_4_TST), "tst" },
{ X(ASM_THUMB_FORMAT_4_NEG), "neg" },
{ X(ASM_THUMB_FORMAT_4_CMP), "cmp" },
{ X(ASM_THUMB_FORMAT_4_CMN), "cmn" },
{ X(ASM_THUMB_FORMAT_4_ORR), "orr" },
{ X(ASM_THUMB_FORMAT_4_MUL), "mul" },
{ X(ASM_THUMB_FORMAT_4_BIC), "bic" },
{ X(ASM_THUMB_FORMAT_4_MVN), "mvn" },
};
#undef X
// name is actually a qstr, which should fit in 16 bits
typedef struct _format_9_10_op_t { uint16_t op;
uint16_t name;
} format_9_10_op_t;
#define X(x) (x)
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const format_9_10_op_t format_9_10_op_table[] = {
{ X(ASM_THUMB_FORMAT_9_LDR | ASM_THUMB_FORMAT_9_WORD_TRANSFER), MP_QSTR_ldr },
{ X(ASM_THUMB_FORMAT_9_LDR | ASM_THUMB_FORMAT_9_BYTE_TRANSFER), MP_QSTR_ldrb },
{ X(ASM_THUMB_FORMAT_10_LDRH), MP_QSTR_ldrh },
{ X(ASM_THUMB_FORMAT_9_STR | ASM_THUMB_FORMAT_9_WORD_TRANSFER), MP_QSTR_str },
{ X(ASM_THUMB_FORMAT_9_STR | ASM_THUMB_FORMAT_9_BYTE_TRANSFER), MP_QSTR_strb },
{ X(ASM_THUMB_FORMAT_10_STRH), MP_QSTR_strh },
};
#undef X
// actual opcodes are: 0xee00 | op.hi_nibble, 0x0a00 | op.lo_nibble
typedef struct _format_vfp_op_t {
byte op;
char name[3];
} format_vfp_op_t;
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static const format_vfp_op_t format_vfp_op_table[] = {
{ 0x30, "add" },
{ 0x34, "sub" },
{ 0x20, "mul" },
{ 0x80, "div" },
};
// shorthand alias for whether we allow ARMv7-M instructions
#define ARMV7M asm_thumb_allow_armv7m(&emit->as)
all: Remove the &#34;STATIC&#34; macro and just use &#34;static&#34; instead. The STATIC macro was introduced a very long time ago in commit d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was to have the option to define it to nothing so that all static functions become global functions and therefore visible to certain debug tools, so one could do function size comparison and other things. This STATIC feature is rarely (if ever) used. And with the use of LTO and heavy inline optimisation, analysing the size of individual functions when they are not static is not a good representation of the size of code when fully optimised. So the macro does not have much use and it&#39;s simpler to just remove it. Then you know exactly what it&#39;s doing. For example, newcomers don&#39;t have to learn what the STATIC macro is and why it exists. Reading the code is also less &#34;loud&#34; with a lowercase static. One other minor point in favour of removing it, is that it stops bugs with `STATIC inline`, which should always be `static inline`. Methodology for this commit was: 1) git ls-files | egrep &#39;\.[ch]$&#39; | \ xargs sed -Ei &#34;s/(^| )STATIC($| )/\1static\2/&#34; 2) Do some manual cleanup in the diff by searching for the word STATIC in comments and changing those back. 3) &#34;git-grep STATIC docs/&#34;, manually fixed those cases. 4) &#34;rg -t python STATIC&#34;, manually fixed codegen lines that used STATIC. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton &lt;angus@redyak.com.au&gt;
8 months ago
static void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, mp_parse_node_t *pn_args) {
// TODO perhaps make two tables:
// one_args =
// "b", LAB, asm_thumb_b_n,
// "bgt", LAB, asm_thumb_bgt_n,
// two_args =
// "movs", RLO, I8, asm_thumb_movs_reg_i8
// "movw", REG, REG, asm_thumb_movw_reg_i16
// three_args =
// "subs", RLO, RLO, I3, asm_thumb_subs_reg_reg_i3
size_t op_len;
const char *op_str = (const char *)qstr_data(op, &op_len);
if (emit_inline_thumb_allow_float(emit) && op_str[0] == 'v') {
// floating point operations
if (n_args == 2) {
mp_uint_t op_code = 0x0ac0, op_code_hi;
if (op == MP_QSTR_vcmp) {
op_code_hi = 0xeeb4;
op_vfp_twoargs:;
mp_uint_t vd = get_arg_vfpreg(emit, op_str, pn_args[0]);
mp_uint_t vm = get_arg_vfpreg(emit, op_str, pn_args[1]);
asm_thumb_op32(&emit->as,
op_code_hi | ((vd & 1) << 6),
op_code | ((vd & 0x1e) << 11) | ((vm & 1) << 5) | (vm & 0x1e) >> 1);
} else if (op == MP_QSTR_vsqrt) {
op_code_hi = 0xeeb1;
goto op_vfp_twoargs;
} else if (op == MP_QSTR_vneg) {
op_code_hi = 0xeeb1;
op_code = 0x0a40;
goto op_vfp_twoargs;
} else if (op == MP_QSTR_vcvt_f32_s32) {
op_code_hi = 0xeeb8; // int to float
goto op_vfp_twoargs;
} else if (op == MP_QSTR_vcvt_s32_f32) {
op_code_hi = 0xeebd; // float to int
goto op_vfp_twoargs;
} else if (op == MP_QSTR_vmrs) {
mp_uint_t reg_dest;
const char *reg_str0 = get_arg_str(pn_args[0]);
if (strcmp(reg_str0, "APSR_nzcv") == 0) {
reg_dest = 15;
} else {
reg_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
}
const char *reg_str1 = get_arg_str(pn_args[1]);
if (strcmp(reg_str1, "FPSCR") == 0) {
// FP status to ARM reg
asm_thumb_op32(&emit->as, 0xeef1, 0x0a10 | (reg_dest << 12));
} else {
goto unknown_op;
}
} else if (op == MP_QSTR_vmov) {
op_code_hi = 0xee00;
mp_uint_t r_arm, vm;
const char *reg_str = get_arg_str(pn_args[0]);
if (reg_str[0] == 'r') {
r_arm = get_arg_reg(emit, op_str, pn_args[0], 15);
vm = get_arg_vfpreg(emit, op_str, pn_args[1]);
op_code_hi |= 0x10;
} else {
vm = get_arg_vfpreg(emit, op_str, pn_args[0]);
r_arm = get_arg_reg(emit, op_str, pn_args[1], 15);
}
asm_thumb_op32(&emit->as,
op_code_hi | ((vm & 0x1e) >> 1),
0x0a10 | (r_arm << 12) | ((vm & 1) << 7));
} else if (op == MP_QSTR_vldr) {
op_code_hi = 0xed90;
op_vldr_vstr:;
mp_uint_t vd = get_arg_vfpreg(emit, op_str, pn_args[0]);
mp_parse_node_t pn_base, pn_offset;
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t rlo_base = get_arg_reg(emit, op_str, pn_base, 7);
mp_uint_t i8;
i8 = get_arg_i(emit, op_str, pn_offset, 0x3fc) >> 2;
asm_thumb_op32(&emit->as,
op_code_hi | rlo_base | ((vd & 1) << 6),
0x0a00 | ((vd & 0x1e) << 11) | i8);
}
} else if (op == MP_QSTR_vstr) {
op_code_hi = 0xed80;
goto op_vldr_vstr;
} else {
goto unknown_op;
}
} else if (n_args == 3) {
// search table for arith ops
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(format_vfp_op_table); i++) {
if (strncmp(op_str + 1, format_vfp_op_table[i].name, 3) == 0 && op_str[4] == '\0') {
mp_uint_t op_code_hi = 0xee00 | (format_vfp_op_table[i].op & 0xf0);
mp_uint_t op_code = 0x0a00 | ((format_vfp_op_table[i].op & 0x0f) << 4);
mp_uint_t vd = get_arg_vfpreg(emit, op_str, pn_args[0]);
mp_uint_t vn = get_arg_vfpreg(emit, op_str, pn_args[1]);
mp_uint_t vm = get_arg_vfpreg(emit, op_str, pn_args[2]);
asm_thumb_op32(&emit->as,
op_code_hi | ((vd & 1) << 6) | (vn >> 1),
op_code | (vm >> 1) | ((vm & 1) << 5) | ((vd & 0x1e) << 11) | ((vn & 1) << 7));
return;
}
}
goto unknown_op;
} else {
goto unknown_op;
}
return;
}
if (n_args == 0) {
if (op == MP_QSTR_nop) {
asm_thumb_op16(&emit->as, ASM_THUMB_OP_NOP);
} else if (op == MP_QSTR_wfi) {
asm_thumb_op16(&emit->as, ASM_THUMB_OP_WFI);
} else {
goto unknown_op;
}
} else if (n_args == 1) {
if (op == MP_QSTR_b) {
int label_num = get_arg_label(emit, op_str, pn_args[0]);
if (!asm_thumb_b_n_label(&emit->as, label_num)) {
goto branch_not_in_range;
}
} else if (op == MP_QSTR_bl) {
int label_num = get_arg_label(emit, op_str, pn_args[0]);
if (!asm_thumb_bl_label(&emit->as, label_num)) {
goto branch_not_in_range;
}
} else if (op == MP_QSTR_bx) {
mp_uint_t r = get_arg_reg(emit, op_str, pn_args[0], 15);
asm_thumb_op16(&emit->as, 0x4700 | (r << 3));
} else if (op_str[0] == 'b' && (op_len == 3
|| (op_len == 5 && op_str[3] == '_'
&& (op_str[4] == 'n' || (ARMV7M && op_str[4] == 'w'))))) {
mp_uint_t cc = -1;
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(cc_name_table); i++) {
if (op_str[1] == cc_name_table[i].name[0] && op_str[2] == cc_name_table[i].name[1]) {
cc = cc_name_table[i].cc;
}
}
if (cc == (mp_uint_t)-1) {
goto unknown_op;
}
int label_num = get_arg_label(emit, op_str, pn_args[0]);
bool wide = op_len == 5 && op_str[4] == 'w';
if (wide && !ARMV7M) {
goto unknown_op;
}
if (!asm_thumb_bcc_nw_label(&emit->as, cc, label_num, wide)) {
goto branch_not_in_range;
}
} else if (ARMV7M && op_str[0] == 'i' && op_str[1] == 't') {
const char *arg_str = get_arg_str(pn_args[0]);
mp_uint_t cc = -1;
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(cc_name_table); i++) {
if (arg_str[0] == cc_name_table[i].name[0]
&& arg_str[1] == cc_name_table[i].name[1]
&& arg_str[2] == '\0') {
cc = cc_name_table[i].cc;
break;
}
}
if (cc == (mp_uint_t)-1) {
goto unknown_op;
}
const char *os = op_str + 2;
while (*os != '\0') {
os++;
}
if (os > op_str + 5) {
goto unknown_op;
}
mp_uint_t it_mask = 8;
while (--os >= op_str + 2) {
it_mask >>= 1;
if (*os == 't') {
it_mask |= (cc & 1) << 3;
} else if (*os == 'e') {
it_mask |= ((~cc) & 1) << 3;
} else {
goto unknown_op;
}
}
asm_thumb_it_cc(&emit->as, cc, it_mask);
} else if (op == MP_QSTR_cpsid) {
// TODO check pn_args[0] == i
asm_thumb_op16(&emit->as, ASM_THUMB_OP_CPSID_I);
} else if (op == MP_QSTR_cpsie) {
// TODO check pn_args[0] == i
asm_thumb_op16(&emit->as, ASM_THUMB_OP_CPSIE_I);
} else if (op == MP_QSTR_push) {
mp_uint_t reglist = get_arg_reglist(emit, op_str, pn_args[0]);
if ((reglist & 0xbf00) == 0) {
if ((reglist & (1 << 14)) == 0) {
asm_thumb_op16(&emit->as, 0xb400 | reglist);
} else {
// 16-bit encoding for pushing low registers and LR
asm_thumb_op16(&emit->as, 0xb500 | (reglist & 0xff));
}
} else {
if (!ARMV7M) {
goto unknown_op;
}
asm_thumb_op32(&emit->as, 0xe92d, reglist);
}
} else if (op == MP_QSTR_pop) {
mp_uint_t reglist = get_arg_reglist(emit, op_str, pn_args[0]);
if ((reglist & 0x7f00) == 0) {
if ((reglist & (1 << 15)) == 0) {
asm_thumb_op16(&emit->as, 0xbc00 | reglist);
} else {
// 16-bit encoding for popping low registers and PC, i.e., returning
asm_thumb_op16(&emit->as, 0xbd00 | (reglist & 0xff));
}
} else {
if (!ARMV7M) {
goto unknown_op;
}
asm_thumb_op32(&emit->as, 0xe8bd, reglist);
}
} else {
goto unknown_op;
}
} else if (n_args == 2) {
if (MP_PARSE_NODE_IS_ID(pn_args[1])) {
// second arg is a register (or should be)
mp_uint_t op_code, op_code_hi;
if (op == MP_QSTR_mov) {
mp_uint_t reg_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
mp_uint_t reg_src = get_arg_reg(emit, op_str, pn_args[1], 15);
asm_thumb_mov_reg_reg(&emit->as, reg_dest, reg_src);
} else if (ARMV7M && op == MP_QSTR_clz) {
op_code_hi = 0xfab0;
op_code = 0xf080;
mp_uint_t rd, rm;
op_clz_rbit:
rd = get_arg_reg(emit, op_str, pn_args[0], 15);
rm = get_arg_reg(emit, op_str, pn_args[1], 15);
asm_thumb_op32(&emit->as, op_code_hi | rm, op_code | (rd << 8) | rm);
} else if (ARMV7M && op == MP_QSTR_rbit) {
op_code_hi = 0xfa90;
op_code = 0xf0a0;
goto op_clz_rbit;
} else if (ARMV7M && op == MP_QSTR_mrs) {
mp_uint_t reg_dest = get_arg_reg(emit, op_str, pn_args[0], 12);
mp_uint_t reg_src = get_arg_special_reg(emit, op_str, pn_args[1]);
asm_thumb_op32(&emit->as, 0xf3ef, 0x8000 | (reg_dest << 8) | reg_src);
} else {
if (op == MP_QSTR_and_) {
op_code = ASM_THUMB_FORMAT_4_AND;
mp_uint_t reg_dest, reg_src;
op_format_4:
reg_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
reg_src = get_arg_reg(emit, op_str, pn_args[1], 7);
asm_thumb_format_4(&emit->as, op_code, reg_dest, reg_src);
return;
}
// search table for ALU ops
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(format_4_op_table); i++) {
if (strncmp(op_str, format_4_op_table[i].name, 3) == 0 && op_str[3] == '\0') {
op_code = 0x4000 | (format_4_op_table[i].op << 4);
goto op_format_4;
}
}
goto unknown_op;
}
} else {
// second arg is not a register
mp_uint_t op_code;
if (op == MP_QSTR_mov) {
op_code = ASM_THUMB_FORMAT_3_MOV;
mp_uint_t rlo_dest, i8_src;
op_format_3:
rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
i8_src = get_arg_i(emit, op_str, pn_args[1], 0xff);
asm_thumb_format_3(&emit->as, op_code, rlo_dest, i8_src);
} else if (op == MP_QSTR_cmp) {
op_code = ASM_THUMB_FORMAT_3_CMP;
goto op_format_3;
} else if (op == MP_QSTR_add) {
op_code = ASM_THUMB_FORMAT_3_ADD;
goto op_format_3;
} else if (op == MP_QSTR_sub) {
op_code = ASM_THUMB_FORMAT_3_SUB;
goto op_format_3;
} else if (ARMV7M && op == MP_QSTR_movw) {
op_code = ASM_THUMB_OP_MOVW;
mp_uint_t reg_dest;
op_movw_movt:
reg_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
int i_src = get_arg_i(emit, op_str, pn_args[1], 0xffff);
asm_thumb_mov_reg_i16(&emit->as, op_code, reg_dest, i_src);
} else if (ARMV7M && op == MP_QSTR_movt) {
op_code = ASM_THUMB_OP_MOVT;
goto op_movw_movt;
} else if (ARMV7M && op == MP_QSTR_movwt) {
// this is a convenience instruction
mp_uint_t reg_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
uint32_t i_src = get_arg_i(emit, op_str, pn_args[1], 0xffffffff);
asm_thumb_mov_reg_i16(&emit->as, ASM_THUMB_OP_MOVW, reg_dest, i_src & 0xffff);
asm_thumb_mov_reg_i16(&emit->as, ASM_THUMB_OP_MOVT, reg_dest, (i_src >> 16) & 0xffff);
} else if (ARMV7M && op == MP_QSTR_ldrex) {
mp_uint_t r_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
mp_parse_node_t pn_base, pn_offset;
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t r_base = get_arg_reg(emit, op_str, pn_base, 15);
mp_uint_t i8 = get_arg_i(emit, op_str, pn_offset, 0xff) >> 2;
asm_thumb_op32(&emit->as, 0xe850 | r_base, 0x0f00 | (r_dest << 12) | i8);
}
} else {
// search table for ldr/str instructions
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(format_9_10_op_table); i++) {
if (op == format_9_10_op_table[i].name) {
op_code = format_9_10_op_table[i].op;
mp_parse_node_t pn_base, pn_offset;
mp_uint_t rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t rlo_base = get_arg_reg(emit, op_str, pn_base, 7);
mp_uint_t i5;
if (op_code & ASM_THUMB_FORMAT_9_BYTE_TRANSFER) {
i5 = get_arg_i(emit, op_str, pn_offset, 0x1f);
} else if (op_code & ASM_THUMB_FORMAT_10_STRH) { // also catches LDRH
i5 = get_arg_i(emit, op_str, pn_offset, 0x3e) >> 1;
} else {
i5 = get_arg_i(emit, op_str, pn_offset, 0x7c) >> 2;
}
asm_thumb_format_9_10(&emit->as, op_code, rlo_dest, rlo_base, i5);
return;
}
break;
}
}
goto unknown_op;
}
}
} else if (n_args == 3) {
mp_uint_t op_code;
if (op == MP_QSTR_lsl) {
op_code = ASM_THUMB_FORMAT_1_LSL;
mp_uint_t rlo_dest, rlo_src, i5;
op_format_1:
rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
rlo_src = get_arg_reg(emit, op_str, pn_args[1], 7);
i5 = get_arg_i(emit, op_str, pn_args[2], 0x1f);
asm_thumb_format_1(&emit->as, op_code, rlo_dest, rlo_src, i5);
} else if (op == MP_QSTR_lsr) {
op_code = ASM_THUMB_FORMAT_1_LSR;
goto op_format_1;
} else if (op == MP_QSTR_asr) {
op_code = ASM_THUMB_FORMAT_1_ASR;
goto op_format_1;
} else if (op == MP_QSTR_add) {
op_code = ASM_THUMB_FORMAT_2_ADD;
mp_uint_t rlo_dest, rlo_src;
op_format_2:
rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
rlo_src = get_arg_reg(emit, op_str, pn_args[1], 7);
int src_b;
if (MP_PARSE_NODE_IS_ID(pn_args[2])) {
op_code |= ASM_THUMB_FORMAT_2_REG_OPERAND;
src_b = get_arg_reg(emit, op_str, pn_args[2], 7);
} else {
op_code |= ASM_THUMB_FORMAT_2_IMM_OPERAND;
src_b = get_arg_i(emit, op_str, pn_args[2], 0x7);
}
asm_thumb_format_2(&emit->as, op_code, rlo_dest, rlo_src, src_b);
} else if (ARMV7M && op == MP_QSTR_sdiv) {
op_code = 0xfb90; // sdiv high part
mp_uint_t rd, rn, rm;
op_sdiv_udiv:
rd = get_arg_reg(emit, op_str, pn_args[0], 15);
rn = get_arg_reg(emit, op_str, pn_args[1], 15);
rm = get_arg_reg(emit, op_str, pn_args[2], 15);
asm_thumb_op32(&emit->as, op_code | rn, 0xf0f0 | (rd << 8) | rm);
} else if (ARMV7M && op == MP_QSTR_udiv) {
op_code = 0xfbb0; // udiv high part
goto op_sdiv_udiv;
} else if (op == MP_QSTR_sub) {
op_code = ASM_THUMB_FORMAT_2_SUB;
goto op_format_2;
} else if (ARMV7M && op == MP_QSTR_strex) {
mp_uint_t r_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
mp_uint_t r_src = get_arg_reg(emit, op_str, pn_args[1], 15);
mp_parse_node_t pn_base, pn_offset;
if (get_arg_addr(emit, op_str, pn_args[2], &pn_base, &pn_offset)) {
mp_uint_t r_base = get_arg_reg(emit, op_str, pn_base, 15);
mp_uint_t i8 = get_arg_i(emit, op_str, pn_offset, 0xff) >> 2;
asm_thumb_op32(&emit->as, 0xe840 | r_base, (r_src << 12) | (r_dest << 8) | i8);
}
} else {
goto unknown_op;
}
} else {
goto unknown_op;
}
return;
unknown_op:
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("unsupported Thumb instruction '%s' with %d arguments"), op_str, n_args));
return;
branch_not_in_range:
emit_inline_thumb_error_msg(emit, MP_ERROR_TEXT("branch not in range"));
return;
}
const emit_inline_asm_method_table_t emit_inline_thumb_method_table = {
#if MICROPY_DYNAMIC_COMPILER
emit_inline_thumb_new,
emit_inline_thumb_free,
#endif
emit_inline_thumb_start_pass,
emit_inline_thumb_end_pass,
emit_inline_thumb_count_params,
emit_inline_thumb_label,
emit_inline_thumb_op,
};
#endif // MICROPY_EMIT_INLINE_THUMB