You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
3.0 KiB

.. _pyb.ADC:
class ADC -- analog to digital conversion
=========================================
.. only:: port_pyboard
Usage::
import pyb
adc = pyb.ADC(pin) # create an analog object from a pin
val = adc.read() # read an analog value
adc = pyb.ADCAll(resolution) # creale an ADCAll object
val = adc.read_channel(channel) # read the given channel
val = adc.read_core_temp() # read MCU temperature
val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF
Constructors
------------
.. only:: port_pyboard
.. class:: pyb.ADC(pin)
Create an ADC object associated with the given pin.
This allows you to then read analog values on that pin.
Methods
-------
.. only:: port_pyboard
.. method:: adc.read()
Read the value on the analog pin and return it. The returned value
will be between 0 and 4095.
.. method:: adc.read_timed(buf, timer)
Read analog values into ``buf`` at a rate set by the ``timer`` object.
``buf`` can be bytearray or array.array for example. The ADC values have
12-bit resolution and are stored directly into ``buf`` if its element size is
16 bits or greater. If ``buf`` has only 8-bit elements (eg a bytearray) then
the sample resolution will be reduced to 8 bits.
``timer`` should be a Timer object, and a sample is read each time the timer
triggers. The timer must already be initialised and running at the desired
sampling frequency.
To support previous behaviour of this function, ``timer`` can also be an
integer which specifies the frequency (in Hz) to sample at. In this case
Timer(6) will be automatically configured to run at the given frequency.
Example using a Timer object (preferred way)::
adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
buf = bytearray(100) # creat a buffer to store the samples
adc.read_timed(buf, tim) # sample 100 values, taking 10s
Example using an integer for the frequency::
adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
buf = bytearray(100) # create a buffer of 100 bytes
adc.read_timed(buf, 10) # read analog values into buf at 10Hz
# this will take 10 seconds to finish
for val in buf: # loop over all values
print(val) # print the value out
This function does not allocate any memory.
The ADCAll Object
-----------------
Instantiating this changes all ADC pins to analog inputs. It is possible to read the
MCU temperature, VREF and VBAT without using ADCAll. The raw data can be accessed on
ADC channels 16, 17 and 18 respectively. However appropriate scaling will need to be applied.