|
|
|
# Source: https://github.com/python/pyperformance
|
|
|
|
# License: MIT
|
|
|
|
|
|
|
|
# Artificial, floating point-heavy benchmark originally used by Factor.
|
|
|
|
|
|
|
|
from math import sin, cos, sqrt
|
|
|
|
|
|
|
|
|
|
|
|
class Point(object):
|
|
|
|
__slots__ = ("x", "y", "z")
|
|
|
|
|
|
|
|
def __init__(self, i):
|
|
|
|
self.x = x = sin(i)
|
|
|
|
self.y = cos(i) * 3
|
|
|
|
self.z = (x * x) / 2
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return "<Point: x=%s, y=%s, z=%s>" % (self.x, self.y, self.z)
|
|
|
|
|
|
|
|
def normalize(self):
|
|
|
|
x = self.x
|
|
|
|
y = self.y
|
|
|
|
z = self.z
|
|
|
|
norm = sqrt(x * x + y * y + z * z)
|
|
|
|
self.x /= norm
|
|
|
|
self.y /= norm
|
|
|
|
self.z /= norm
|
|
|
|
|
|
|
|
def maximize(self, other):
|
|
|
|
self.x = self.x if self.x > other.x else other.x
|
|
|
|
self.y = self.y if self.y > other.y else other.y
|
|
|
|
self.z = self.z if self.z > other.z else other.z
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
|
|
def maximize(points):
|
|
|
|
next = points[0]
|
|
|
|
for p in points[1:]:
|
|
|
|
next = next.maximize(p)
|
|
|
|
return next
|
|
|
|
|
|
|
|
|
|
|
|
def benchmark(n):
|
|
|
|
points = [None] * n
|
|
|
|
for i in range(n):
|
|
|
|
points[i] = Point(i)
|
|
|
|
for p in points:
|
|
|
|
p.normalize()
|
|
|
|
return maximize(points)
|
|
|
|
|
|
|
|
|
|
|
|
###########################################################################
|
|
|
|
# Benchmark interface
|
|
|
|
|
|
|
|
bm_params = {
|
|
|
|
(50, 25): (1, 150),
|
|
|
|
(100, 100): (1, 250),
|
|
|
|
(1000, 1000): (10, 1500),
|
|
|
|
(5000, 1000): (20, 3000),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def bm_setup(params):
|
|
|
|
state = None
|
|
|
|
|
|
|
|
def run():
|
|
|
|
nonlocal state
|
|
|
|
for _ in range(params[0]):
|
|
|
|
state = benchmark(params[1])
|
|
|
|
|
|
|
|
def result():
|
|
|
|
return params[0] * params[1], "Point(%.4f, %.4f, %.4f)" % (state.x, state.y, state.z)
|
|
|
|
|
|
|
|
return run, result
|