// All Micro Python objects are at least this type
// It must be of pointer size
typedef machine_ptr_t mp_obj_t ;
typedef machine_const_ptr_t mp_const_obj_t ;
// Integers that fit in a pointer have this type
// (do we need to expose this in the public API?)
typedef machine_int_t mp_small_int_t ;
// Anything that wants to be a Micro Python object must have
// mp_obj_base_t as its first member (except NULL and small ints)
struct _mp_obj_type_t ;
struct _mp_obj_base_t {
const struct _mp_obj_type_t * type ;
} ;
typedef struct _mp_obj_base_t mp_obj_base_t ;
// The NULL object is used to indicate the absence of an object
// It *cannot* be used when an mp_obj_t is expected, except where explicitly allowed
# define MP_OBJ_NULL ((mp_obj_t)NULL)
// The SENTINEL object is used for various internal purposes where one needs
// an object which is unique from all other objects, including MP_OBJ_NULL.
# define MP_OBJ_SENTINEL ((mp_obj_t)8)
// These macros check for small int, qstr or object, and access small int and qstr values
// - xxxx...xxx1: a small int, bits 1 and above are the value
// - xxxx...xx10: a qstr, bits 2 and above are the value
// - xxxx...xx00: a pointer to an mp_obj_base_t
// In SMALL_INT, next-to-highest bits is used as sign, so both must match for value in range
# define MP_SMALL_INT_MIN ((mp_small_int_t)(((machine_int_t)WORD_MSBIT_HIGH) >> 1))
# define MP_SMALL_INT_MAX ((mp_small_int_t)(~(MP_SMALL_INT_MIN)))
# define MP_OBJ_FITS_SMALL_INT(n) ((((n) ^ ((n) << 1)) & WORD_MSBIT_HIGH) == 0)
# define MP_OBJ_IS_SMALL_INT(o) ((((mp_small_int_t)(o)) & 1) != 0)
# define MP_OBJ_IS_QSTR(o) ((((mp_small_int_t)(o)) & 3) == 2)
# define MP_OBJ_IS_OBJ(o) ((((mp_small_int_t)(o)) & 3) == 0)
# define MP_OBJ_IS_TYPE(o, t) (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))) // this does not work for checking a string, use below macro for that
# define MP_OBJ_IS_INT(o) (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int))
# define MP_OBJ_IS_STR(o) (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str))
# define MP_OBJ_SMALL_INT_VALUE(o) (((mp_small_int_t)(o)) >> 1)
# define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)(((small_int) << 1) | 1))
# define MP_OBJ_QSTR_VALUE(o) (((mp_small_int_t)(o)) >> 2)
# define MP_OBJ_NEW_QSTR(qstr) ((mp_obj_t)((((machine_uint_t)qstr) << 2) | 2))
// These macros are used to declare and define constant function objects
// You can put "static" in front of the definitions to make them local
# define MP_DECLARE_CONST_FUN_OBJ(obj_name) extern const mp_obj_fun_native_t obj_name
# define MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, is_kw, n_args_min, n_args_max, fun_name) const mp_obj_fun_native_t obj_name = {{&mp_type_fun_native}, is_kw, n_args_min, n_args_max, (void *)fun_name}
# define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 0, 0, (mp_fun_0_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 1, 1, (mp_fun_1_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 2, 2, (mp_fun_2_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, 3, 3, (mp_fun_3_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_var_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, false, n_args_min, n_args_max, (mp_fun_var_t)fun_name)
# define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) MP_DEFINE_CONST_FUN_OBJ_VOID_PTR(obj_name, true, n_args_min, MP_OBJ_FUN_ARGS_MAX, (mp_fun_kw_t)fun_name)
// This macro is used to define constant dict objects
// You can put "static" in front of the definition to make it local
# define MP_DEFINE_CONST_DICT(dict_name, table_name) \
const mp_obj_dict_t dict_name = { \
. base = { & mp_type_dict } , \
. map = { \
. all_keys_are_qstrs = 1 , \
. table_is_fixed_array = 1 , \
. used = sizeof ( table_name ) / sizeof ( mp_map_elem_t ) , \
. alloc = sizeof ( table_name ) / sizeof ( mp_map_elem_t ) , \
. table = ( mp_map_elem_t * ) table_name , \
} , \
}
// These macros are used to declare and define constant staticmethond and classmethod objects
// You can put "static" in front of the definitions to make them local
# define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name
# define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_obj_static_class_method_t obj_name
# define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name}
# define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name}
// Underlying map/hash table implementation (not dict object or map function)
typedef struct _mp_map_elem_t {
mp_obj_t key ;
mp_obj_t value ;
} mp_map_elem_t ;
// TODO maybe have a truncated mp_map_t for fixed tables, since alloc=used
// put alloc last in the structure, so the truncated version does not need it
// this would save 1 ROM word for all ROM objects that have a locals_dict
// would also need a trucated dict structure
typedef struct _mp_map_t {
machine_uint_t all_keys_are_qstrs : 1 ;
machine_uint_t table_is_fixed_array : 1 ;
machine_uint_t used : ( 8 * sizeof ( machine_uint_t ) - 2 ) ;
machine_uint_t alloc ;
mp_map_elem_t * table ;
} mp_map_t ;
// These can be or'd together
typedef enum _mp_map_lookup_kind_t {
MP_MAP_LOOKUP , // 0
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND , // 1
MP_MAP_LOOKUP_REMOVE_IF_FOUND , // 2
} mp_map_lookup_kind_t ;
# define MP_MAP_SLOT_IS_FILLED(map, pos) ((map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL)
void mp_map_init ( mp_map_t * map , int n ) ;
void mp_map_init_fixed_table ( mp_map_t * map , int n , const mp_obj_t * table ) ;
mp_map_t * mp_map_new ( int n ) ;
void mp_map_deinit ( mp_map_t * map ) ;
void mp_map_free ( mp_map_t * map ) ;
mp_map_elem_t * mp_map_lookup ( mp_map_t * map , mp_obj_t index , mp_map_lookup_kind_t lookup_kind ) ;
void mp_map_clear ( mp_map_t * map ) ;
void mp_map_dump ( mp_map_t * map ) ;
// Underlying set implementation (not set object)
typedef struct _mp_set_t {
machine_uint_t alloc ;
machine_uint_t used ;
mp_obj_t * table ;
} mp_set_t ;
# define MP_SET_SLOT_IS_FILLED(set, pos) ((set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL)
void mp_set_init ( mp_set_t * set , int n ) ;
mp_obj_t mp_set_lookup ( mp_set_t * set , mp_obj_t index , mp_map_lookup_kind_t lookup_kind ) ;
mp_obj_t mp_set_remove_first ( mp_set_t * set ) ;
void mp_set_clear ( mp_set_t * set ) ;
// Type definitions for methods
typedef mp_obj_t ( * mp_fun_0_t ) ( void ) ;
typedef mp_obj_t ( * mp_fun_1_t ) ( mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_2_t ) ( mp_obj_t , mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_3_t ) ( mp_obj_t , mp_obj_t , mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_t ) ( void ) ;
typedef mp_obj_t ( * mp_fun_var_t ) ( uint n , const mp_obj_t * ) ;
typedef mp_obj_t ( * mp_fun_kw_t ) ( uint n , const mp_obj_t * , mp_map_t * ) ;
typedef enum {
PRINT_STR ,
PRINT_REPR ,
PRINT_EXC , // Special format for printing exception in unhandled exception message
} mp_print_kind_t ;
typedef void ( * mp_print_fun_t ) ( void ( * print ) ( void * env , const char * fmt , . . . ) , void * env , mp_obj_t o , mp_print_kind_t kind ) ;
typedef mp_obj_t ( * mp_make_new_fun_t ) ( mp_obj_t type_in , uint n_args , uint n_kw , const mp_obj_t * args ) ;
typedef mp_obj_t ( * mp_call_fun_t ) ( mp_obj_t fun , uint n_args , uint n_kw , const mp_obj_t * args ) ;
typedef mp_obj_t ( * mp_unary_op_fun_t ) ( int op , mp_obj_t ) ;
typedef mp_obj_t ( * mp_binary_op_fun_t ) ( int op , mp_obj_t , mp_obj_t ) ;
typedef void ( * mp_load_attr_fun_t ) ( mp_obj_t self_in , qstr attr , mp_obj_t * dest ) ; // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
typedef bool ( * mp_store_attr_fun_t ) ( mp_obj_t self_in , qstr attr , mp_obj_t value ) ; // return true if store succeeded; if value==MP_OBJ_NULL then delete
typedef bool ( * mp_store_item_fun_t ) ( mp_obj_t self_in , mp_obj_t index , mp_obj_t value ) ; // return true if store succeeded; if value==MP_OBJ_NULL then delete
typedef struct _mp_method_t {
qstr name ;
mp_const_obj_t fun ;
} mp_method_t ;
// Buffer protocol
typedef struct _buffer_info_t {
// if we'd bother to support various versions of structure
// (with different number of fields), we can distinguish
// them with ver = sizeof(struct). Cons: overkill for *micro*?
//int ver; // ?
void * buf ;
machine_int_t len ;
// Rationale: have array.array and have SIMD operations on them
// Cons: users can pass item size to processing functions themselves,
// though that's not "plug&play"
// int itemsize;
// Rationale: to load arbitrary-sized sprites directly to LCD
// Cons: a bit adhoc usecase
// int stride;
} buffer_info_t ;
# define BUFFER_READ (1)
# define BUFFER_WRITE (2)
# define BUFFER_RW (BUFFER_READ | BUFFER_WRITE)
typedef struct _mp_buffer_p_t {
machine_int_t ( * get_buffer ) ( mp_obj_t obj , buffer_info_t * bufinfo , int flags ) ;
} mp_buffer_p_t ;
bool mp_get_buffer ( mp_obj_t obj , buffer_info_t * bufinfo ) ;
void mp_get_buffer_raise ( mp_obj_t obj , buffer_info_t * bufinfo ) ;
// Stream protocol
typedef struct _mp_stream_p_t {
// On error, functions should return -1 and fill in *errcode (values are
// implementation-dependent, but will be exposed to user, e.g. via exception).
machine_int_t ( * read ) ( mp_obj_t obj , void * buf , machine_uint_t size , int * errcode ) ;
machine_int_t ( * write ) ( mp_obj_t obj , const void * buf , machine_uint_t size , int * errcode ) ;
// add seek() ?
} mp_stream_p_t ;
struct _mp_obj_type_t {
mp_obj_base_t base ;
qstr name ;
mp_print_fun_t print ;
mp_make_new_fun_t make_new ; // to make an instance of the type
mp_call_fun_t call ;
mp_unary_op_fun_t unary_op ; // can return NULL if op not supported
mp_binary_op_fun_t binary_op ; // can return NULL if op not supported
mp_load_attr_fun_t load_attr ;
mp_store_attr_fun_t store_attr ; // if value is MP_OBJ_NULL, then delete that attribute
// Implements container[index] = val. If val == MP_OBJ_NULL, then it's a delete.
// Note that load_item is implemented by binary_op(RT_BINARY_OP_SUBSCR)
mp_store_item_fun_t store_item ;
mp_fun_1_t getiter ;
mp_fun_1_t iternext ; // may return MP_OBJ_NULL as an optimisation instead of raising StopIteration() (with no args)
// Alternatively, pointer(s) to interfaces to save space
// in mp_obj_type_t at the expense of extra pointer and extra dereference
// when actually used.
mp_buffer_p_t buffer_p ;
const mp_stream_p_t * stream_p ;
// these are for dynamically created types (classes)
mp_obj_t bases_tuple ;
mp_obj_t locals_dict ;
/*
What we might need to add here :
store_subscr list dict
len str tuple list map
abs float complex
hash bool int none str
equal int str
unpack seq list tuple
*/
} ;
typedef struct _mp_obj_type_t mp_obj_type_t ;
// Constant types, globally accessible
extern const mp_obj_type_t mp_type_type ;
extern const mp_obj_type_t mp_type_object ;
extern const mp_obj_type_t mp_type_NoneType ;
extern const mp_obj_type_t mp_type_bool ;
extern const mp_obj_type_t mp_type_int ;
extern const mp_obj_type_t mp_type_str ;
extern const mp_obj_type_t mp_type_bytes ;
extern const mp_obj_type_t mp_type_bytearray ;
extern const mp_obj_type_t mp_type_float ;
extern const mp_obj_type_t mp_type_complex ;
extern const mp_obj_type_t mp_type_tuple ;
extern const mp_obj_type_t mp_type_list ;
extern const mp_obj_type_t mp_type_map ; // map (the python builtin, not the dict implementation detail)
extern const mp_obj_type_t mp_type_enumerate ;
extern const mp_obj_type_t mp_type_filter ;
extern const mp_obj_type_t mp_type_dict ;
extern const mp_obj_type_t mp_type_set ;
extern const mp_obj_type_t mp_type_slice ;
extern const mp_obj_type_t mp_type_zip ;
extern const mp_obj_type_t mp_type_array ;
extern const mp_obj_type_t mp_type_super ;
extern const mp_obj_type_t mp_type_gen_instance ;
extern const mp_obj_type_t mp_type_fun_native ;
extern const mp_obj_type_t mp_type_fun_bc ;
extern const mp_obj_type_t mp_type_module ;
extern const mp_obj_type_t mp_type_staticmethod ;
extern const mp_obj_type_t mp_type_classmethod ;
// Exceptions
extern const mp_obj_type_t mp_type_BaseException ;
extern const mp_obj_type_t mp_type_ArithmeticError ;
extern const mp_obj_type_t mp_type_AssertionError ;
extern const mp_obj_type_t mp_type_AttributeError ;
extern const mp_obj_type_t mp_type_EOFError ;
extern const mp_obj_type_t mp_type_Exception ;
extern const mp_obj_type_t mp_type_GeneratorExit ;
extern const mp_obj_type_t mp_type_IOError ;
extern const mp_obj_type_t mp_type_ImportError ;
extern const mp_obj_type_t mp_type_IndentationError ;
extern const mp_obj_type_t mp_type_IndexError ;
extern const mp_obj_type_t mp_type_KeyError ;
extern const mp_obj_type_t mp_type_LookupError ;
extern const mp_obj_type_t mp_type_MemoryError ;
extern const mp_obj_type_t mp_type_NameError ;
extern const mp_obj_type_t mp_type_NotImplementedError ;
extern const mp_obj_type_t mp_type_OSError ;
extern const mp_obj_type_t mp_type_OverflowError ;
extern const mp_obj_type_t mp_type_RuntimeError ;
extern const mp_obj_type_t mp_type_StopIteration ;
extern const mp_obj_type_t mp_type_SyntaxError ;
extern const mp_obj_type_t mp_type_SystemError ;
extern const mp_obj_type_t mp_type_TypeError ;
extern const mp_obj_type_t mp_type_ValueError ;
extern const mp_obj_type_t mp_type_ZeroDivisionError ;
// Constant objects, globally accessible
// The macros are for convenience only
# define mp_const_none ((mp_obj_t)&mp_const_none_obj)
# define mp_const_false ((mp_obj_t)&mp_const_false_obj)
# define mp_const_true ((mp_obj_t)&mp_const_true_obj)
# define mp_const_empty_tuple ((mp_obj_t)&mp_const_empty_tuple_obj)
extern const struct _mp_obj_none_t mp_const_none_obj ;
extern const struct _mp_obj_bool_t mp_const_false_obj ;
extern const struct _mp_obj_bool_t mp_const_true_obj ;
extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj ;
extern const struct _mp_obj_ellipsis_t mp_const_ellipsis_obj ;
extern const struct _mp_obj_exception_t mp_const_MemoryError_obj ;
extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj ;
// General API for objects
mp_obj_t mp_obj_new_type ( qstr name , mp_obj_t bases_tuple , mp_obj_t locals_dict ) ;
mp_obj_t mp_obj_new_none ( void ) ;
mp_obj_t mp_obj_new_bool ( bool value ) ;
mp_obj_t mp_obj_new_cell ( mp_obj_t obj ) ;
mp_obj_t mp_obj_new_int ( machine_int_t value ) ;
mp_obj_t mp_obj_new_int_from_uint ( machine_uint_t value ) ;
mp_obj_t mp_obj_new_int_from_long_str ( const char * s ) ;
mp_obj_t mp_obj_new_int_from_ll ( long long val ) ; // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_str ( const byte * data , uint len , bool make_qstr_if_not_already ) ;
mp_obj_t mp_obj_new_bytes ( const byte * data , uint len ) ;
# if MICROPY_ENABLE_FLOAT
mp_obj_t mp_obj_new_float ( mp_float_t val ) ;
mp_obj_t mp_obj_new_complex ( mp_float_t real , mp_float_t imag ) ;
# endif
mp_obj_t mp_obj_new_exception ( const mp_obj_type_t * exc_type ) ;
mp_obj_t mp_obj_new_exception_args ( const mp_obj_type_t * exc_type , uint n_args , const mp_obj_t * args ) ;
mp_obj_t mp_obj_new_exception_msg ( const mp_obj_type_t * exc_type , const char * msg ) ;
mp_obj_t mp_obj_new_exception_msg_varg ( const mp_obj_type_t * exc_type , const char * fmt , . . . ) ; // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!)
mp_obj_t mp_obj_new_range ( int start , int stop , int step ) ;
mp_obj_t mp_obj_new_range_iterator ( int cur , int stop , int step ) ;
mp_obj_t mp_obj_new_fun_bc ( uint scope_flags , qstr * args , uint n_args , mp_obj_t def_args , const byte * code ) ;
mp_obj_t mp_obj_new_fun_asm ( uint n_args , void * fun ) ;
mp_obj_t mp_obj_new_gen_wrap ( mp_obj_t fun ) ;
mp_obj_t mp_obj_new_closure ( mp_obj_t fun , mp_obj_t closure_tuple ) ;
mp_obj_t mp_obj_new_tuple ( uint n , const mp_obj_t * items ) ;
mp_obj_t mp_obj_new_list ( uint n , mp_obj_t * items ) ;
mp_obj_t mp_obj_new_dict ( int n_args ) ;
mp_obj_t mp_obj_new_set ( int n_args , mp_obj_t * items ) ;
mp_obj_t mp_obj_new_slice ( mp_obj_t start , mp_obj_t stop , mp_obj_t step ) ;
mp_obj_t mp_obj_new_super ( mp_obj_t type , mp_obj_t obj ) ;
mp_obj_t mp_obj_new_bound_meth ( mp_obj_t meth , mp_obj_t self ) ;
mp_obj_t mp_obj_new_getitem_iter ( mp_obj_t * args ) ;
mp_obj_t mp_obj_new_module ( qstr module_name ) ;
mp_obj_type_t * mp_obj_get_type ( mp_obj_t o_in ) ;
const char * mp_obj_get_type_str ( mp_obj_t o_in ) ;
bool mp_obj_is_subclass_fast ( mp_const_obj_t object , mp_const_obj_t classinfo ) ; // arguments should be type objects
void mp_obj_print_helper ( void ( * print ) ( void * env , const char * fmt , . . . ) , void * env , mp_obj_t o_in , mp_print_kind_t kind ) ;
void mp_obj_print ( mp_obj_t o , mp_print_kind_t kind ) ;
void mp_obj_print_exception ( mp_obj_t exc ) ;
int mp_obj_is_true ( mp_obj_t arg ) ;
bool mp_obj_is_integer ( mp_obj_t o_in ) ; // returns true if o_in is bool, small int, or long int
bool mp_obj_is_callable ( mp_obj_t o_in ) ;
machine_int_t mp_obj_hash ( mp_obj_t o_in ) ;
bool mp_obj_equal ( mp_obj_t o1 , mp_obj_t o2 ) ;
machine_int_t mp_obj_get_int ( mp_obj_t arg ) ;
bool mp_obj_get_int_maybe ( mp_obj_t arg , machine_int_t * value ) ;
# if MICROPY_ENABLE_FLOAT
mp_float_t mp_obj_get_float ( mp_obj_t self_in ) ;
void mp_obj_get_complex ( mp_obj_t self_in , mp_float_t * real , mp_float_t * imag ) ;
# endif
//qstr mp_obj_get_qstr(mp_obj_t arg);
void mp_obj_get_array ( mp_obj_t o , uint * len , mp_obj_t * * items ) ;
void mp_obj_get_array_fixed_n ( mp_obj_t o , uint len , mp_obj_t * * items ) ;
uint mp_get_index ( const mp_obj_type_t * type , machine_uint_t len , mp_obj_t index , bool is_slice ) ;
mp_obj_t mp_obj_len_maybe ( mp_obj_t o_in ) ; /* may return NULL */
// bool
# define MP_BOOL(x) (x ? mp_const_true : mp_const_false)
// cell
mp_obj_t mp_obj_cell_get ( mp_obj_t self_in ) ;
void mp_obj_cell_set ( mp_obj_t self_in , mp_obj_t obj ) ;
// int
// For long int, returns value truncated to machine_int_t
machine_int_t mp_obj_int_get ( mp_obj_t self_in ) ;
# if MICROPY_ENABLE_FLOAT
mp_float_t mp_obj_int_as_float ( mp_obj_t self_in ) ;
# endif
// Will rains exception if value doesn't fit into machine_int_t
machine_int_t mp_obj_int_get_checked ( mp_obj_t self_in ) ;
// exception
bool mp_obj_is_exception_type ( mp_obj_t self_in ) ;
bool mp_obj_is_exception_instance ( mp_obj_t self_in ) ;
bool mp_obj_exception_match ( mp_obj_t exc , const mp_obj_type_t * exc_type ) ;
void mp_obj_exception_clear_traceback ( mp_obj_t self_in ) ;
void mp_obj_exception_add_traceback ( mp_obj_t self_in , qstr file , machine_uint_t line , qstr block ) ;
void mp_obj_exception_get_traceback ( mp_obj_t self_in , machine_uint_t * n , machine_uint_t * * values ) ;
mp_obj_t mp_obj_exception_get_value ( mp_obj_t self_in ) ;
// str
mp_obj_t mp_obj_str_builder_start ( const mp_obj_type_t * type , uint len , byte * * data ) ;
mp_obj_t mp_obj_str_builder_end ( mp_obj_t o_in ) ;
bool mp_obj_str_equal ( mp_obj_t s1 , mp_obj_t s2 ) ;
uint mp_obj_str_get_hash ( mp_obj_t self_in ) ;
uint mp_obj_str_get_len ( mp_obj_t self_in ) ;
qstr mp_obj_str_get_qstr ( mp_obj_t self_in ) ; // use this if you will anyway convert the string to a qstr
const char * mp_obj_str_get_str ( mp_obj_t self_in ) ; // use this only if you need the string to be null terminated
const char * mp_obj_str_get_data ( mp_obj_t self_in , uint * len ) ;
void mp_str_print_quoted ( void ( * print ) ( void * env , const char * fmt , . . . ) , void * env , const byte * str_data , uint str_len ) ;
# if MICROPY_ENABLE_FLOAT
// float
typedef struct _mp_obj_float_t {
mp_obj_base_t base ;
mp_float_t value ;
} mp_obj_float_t ;
mp_float_t mp_obj_float_get ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_float_binary_op ( int op , mp_float_t lhs_val , mp_obj_t rhs ) ; // can return MP_OBJ_NULL
// complex
void mp_obj_complex_get ( mp_obj_t self_in , mp_float_t * real , mp_float_t * imag ) ;
mp_obj_t mp_obj_complex_binary_op ( int op , mp_float_t lhs_real , mp_float_t lhs_imag , mp_obj_t rhs_in ) ; // can return MP_OBJ_NULL
# endif
// tuple
void mp_obj_tuple_get ( mp_obj_t self_in , uint * len , mp_obj_t * * items ) ;
void mp_obj_tuple_del ( mp_obj_t self_in ) ;
machine_int_t mp_obj_tuple_hash ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_tuple_make_new ( mp_obj_t type_in , uint n_args , uint n_kw , const mp_obj_t * args ) ;
// list
mp_obj_t mp_obj_list_append ( mp_obj_t self_in , mp_obj_t arg ) ;
void mp_obj_list_get ( mp_obj_t self_in , uint * len , mp_obj_t * * items ) ;
void mp_obj_list_set_len ( mp_obj_t self_in , uint len ) ;
void mp_obj_list_store ( mp_obj_t self_in , mp_obj_t index , mp_obj_t value ) ;
mp_obj_t mp_obj_list_sort ( uint n_args , const mp_obj_t * args , mp_map_t * kwargs ) ;
// dict
typedef struct _mp_obj_dict_t {
mp_obj_base_t base ;
mp_map_t map ;
} mp_obj_dict_t ;
void mp_obj_dict_init ( mp_obj_dict_t * dict , int n_args ) ;
uint mp_obj_dict_len ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_dict_store ( mp_obj_t self_in , mp_obj_t key , mp_obj_t value ) ;
mp_obj_t mp_obj_dict_delete ( mp_obj_t self_in , mp_obj_t key ) ;
mp_map_t * mp_obj_dict_get_map ( mp_obj_t self_in ) ;
// set
void mp_obj_set_store ( mp_obj_t self_in , mp_obj_t item ) ;
// slice
void mp_obj_slice_get ( mp_obj_t self_in , machine_int_t * start , machine_int_t * stop , machine_int_t * step ) ;
// array
uint mp_obj_array_len ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_new_bytearray_by_ref ( uint n , void * items ) ;
// functions
# define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below
typedef struct _mp_obj_fun_native_t { // need this so we can define const objects (to go in ROM)
mp_obj_base_t base ;
bool is_kw : 1 ;
uint n_args_min : 15 ; // inclusive
uint n_args_max : 16 ; // inclusive
void * fun ;
// TODO add mp_map_t *globals
// for const function objects, make an empty, const map
// such functions won't be able to access the global scope, but that's probably okay
} mp_obj_fun_native_t ;
void mp_obj_fun_bc_get ( mp_obj_t self_in , int * n_args , const byte * * code ) ;
bool mp_obj_fun_prepare_simple_args ( mp_obj_t self_in , uint n_args , uint n_kw , const mp_obj_t * args ,
uint * out_args1_len , const mp_obj_t * * out_args1 , uint * out_args2_len , const mp_obj_t * * out_args2 ) ;
mp_obj_t mp_identity ( mp_obj_t self ) ;
MP_DECLARE_CONST_FUN_OBJ ( mp_identity_obj ) ;
// module
typedef struct _mp_obj_module_t {
mp_obj_base_t base ;
qstr name ;
mp_obj_dict_t * globals ;
} mp_obj_module_t ;
mp_obj_dict_t * mp_obj_module_get_globals ( mp_obj_t self_in ) ;
// staticmethod and classmethod types; defined here so we can make const versions
// this structure is used for instances of both staticmethod and classmethod
typedef struct _mp_obj_static_class_method_t {
mp_obj_base_t base ;
mp_obj_t fun ;
} mp_obj_static_class_method_t ;
// sequence helpers
void mp_seq_multiply ( const void * items , uint item_sz , uint len , uint times , void * dest ) ;
bool m_seq_get_fast_slice_indexes ( machine_uint_t len , mp_obj_t slice , machine_uint_t * begin , machine_uint_t * end ) ;
# define m_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t))
# define m_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); }
bool mp_seq_cmp_bytes ( int op , const byte * data1 , uint len1 , const byte * data2 , uint len2 ) ;
bool mp_seq_cmp_objs ( int op , const mp_obj_t * items1 , uint len1 , const mp_obj_t * items2 , uint len2 ) ;
mp_obj_t mp_seq_index_obj ( const mp_obj_t * items , uint len , uint n_args , const mp_obj_t * args ) ;
mp_obj_t mp_seq_count_obj ( const mp_obj_t * items , uint len , mp_obj_t value ) ;