Browse Source

rp2: Add new port to Raspberry Pi RP2 microcontroller.

This commit adds a new port "rp2" which targets the new Raspberry Pi RP2040
microcontroller.

The build system uses pure cmake (with a small Makefile wrapper for
convenience).  The USB driver is TinyUSB, and there is a machine module
with most of the standard classes implemented.  Some examples are provided
in the examples/rp2/ directory.

Work done in collaboration with Graham Sanderson.

Signed-off-by: Damien George <damien@micropython.org>
pull/6791/head
Damien George 4 years ago
parent
commit
469345e728
  1. 35
      examples/rp2/pio_1hz.py
  2. 27
      examples/rp2/pio_exec.py
  3. 46
      examples/rp2/pio_pinchange.py
  4. 45
      examples/rp2/pio_pwm.py
  5. 44
      examples/rp2/pio_uart_tx.py
  6. 59
      examples/rp2/pio_ws2812.py
  7. 25
      examples/rp2/pwm_fade.py
  8. 162
      ports/rp2/CMakeLists.txt
  9. 14
      ports/rp2/Makefile
  10. 100
      ports/rp2/README.md
  11. 120
      ports/rp2/machine_adc.c
  12. 161
      ports/rp2/machine_i2c.c
  13. 449
      ports/rp2/machine_pin.c
  14. 197
      ports/rp2/machine_pwm.c
  15. 278
      ports/rp2/machine_spi.c
  16. 165
      ports/rp2/machine_timer.c
  17. 246
      ports/rp2/machine_uart.c
  18. 78
      ports/rp2/machine_wdt.c
  19. 208
      ports/rp2/main.c
  20. 3
      ports/rp2/manifest.py
  21. 252
      ports/rp2/memmap_mp.ld
  22. 40
      ports/rp2/micropy_extmod.cmake
  23. 134
      ports/rp2/micropy_py.cmake
  24. 91
      ports/rp2/micropy_rules.cmake
  25. 101
      ports/rp2/modmachine.c
  26. 18
      ports/rp2/modmachine.h
  27. 41
      ports/rp2/modrp2.c
  28. 38
      ports/rp2/modrp2.h
  29. 15
      ports/rp2/modules/_boot.py
  30. 294
      ports/rp2/modules/rp2.py
  31. 103
      ports/rp2/moduos.c
  32. 127
      ports/rp2/modutime.c
  33. 196
      ports/rp2/mpconfigport.h
  34. 142
      ports/rp2/mphalport.c
  35. 113
      ports/rp2/mphalport.h
  36. 105
      ports/rp2/mpthreadport.c
  37. 64
      ports/rp2/mpthreadport.h
  38. 3
      ports/rp2/qstrdefsport.h
  39. 146
      ports/rp2/rp2_flash.c
  40. 780
      ports/rp2/rp2_pio.c
  41. 34
      ports/rp2/tusb_config.h
  42. 115
      ports/rp2/tusb_port.c
  43. 63
      ports/rp2/uart.c
  44. 32
      ports/rp2/uart.h

35
examples/rp2/pio_1hz.py

@ -0,0 +1,35 @@
# Example using PIO to blink an LED and raise an IRQ at 1Hz.
import time
from machine import Pin
import rp2
@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def blink_1hz():
# fmt: off
# Cycles: 1 + 1 + 6 + 32 * (30 + 1) = 1000
irq(rel(0))
set(pins, 1)
set(x, 31) [5]
label("delay_high")
nop() [29]
jmp(x_dec, "delay_high")
# Cycles: 1 + 7 + 32 * (30 + 1) = 1000
set(pins, 0)
set(x, 31) [6]
label("delay_low")
nop() [29]
jmp(x_dec, "delay_low")
# fmt: on
# Create the StateMachine with the blink_1hz program, outputting on Pin(25).
sm = rp2.StateMachine(0, blink_1hz, freq=2000, set_base=Pin(25))
# Set the IRQ handler to print the millisecond timestamp.
sm.irq(lambda p: print(time.ticks_ms()))
# Start the StateMachine.
sm.active(1)

27
examples/rp2/pio_exec.py

@ -0,0 +1,27 @@
# Example using PIO to turn on an LED via an explicit exec.
#
# Demonstrates:
# - using set_init and set_base
# - using StateMachine.exec
import time
from machine import Pin
import rp2
# Define an empty program that uses a single set pin.
@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def prog():
pass
# Construct the StateMachine, binding Pin(25) to the set pin.
sm = rp2.StateMachine(0, prog, set_base=Pin(25))
# Turn on the set pin via an exec instruction.
sm.exec("set(pins, 1)")
# Sleep for 500ms.
time.sleep(0.5)
# Turn off the set pin via an exec instruction.
sm.exec("set(pins, 0)")

46
examples/rp2/pio_pinchange.py

@ -0,0 +1,46 @@
# Example using PIO to wait for a pin change and raise an IRQ.
#
# Demonstrates:
# - PIO wrapping
# - PIO wait instruction, waiting on an input pin
# - PIO irq instruction, in blocking mode with relative IRQ number
# - setting the in_base pin for a StateMachine
# - setting an irq handler for a StateMachine
# - instantiating 2x StateMachine's with the same program and different pins
import time
from machine import Pin
import rp2
@rp2.asm_pio()
def wait_pin_low():
wrap_target()
wait(0, pin, 0)
irq(block, rel(0))
wait(1, pin, 0)
wrap()
def handler(sm):
# Print a (wrapping) timestamp, and the state machine object.
print(time.ticks_ms(), sm)
# Instantiate StateMachine(0) with wait_pin_low program on Pin(16).
pin16 = Pin(16, Pin.IN, Pin.PULL_UP)
sm0 = rp2.StateMachine(0, wait_pin_low, in_base=pin16)
sm0.irq(handler)
# Instantiate StateMachine(1) with wait_pin_low program on Pin(17).
pin17 = Pin(17, Pin.IN, Pin.PULL_UP)
sm1 = rp2.StateMachine(1, wait_pin_low, in_base=pin17)
sm1.irq(handler)
# Start the StateMachine's running.
sm0.active(1)
sm1.active(1)
# Now, when Pin(16) or Pin(17) is pulled low a message will be printed to the REPL.

45
examples/rp2/pio_pwm.py

@ -0,0 +1,45 @@
# Example of using PIO for PWM, and fading the brightness of an LED
from machine import Pin
from rp2 import PIO, StateMachine, asm_pio
from time import sleep
@asm_pio(sideset_init=PIO.OUT_LOW)
def pwm_prog():
# fmt: off
pull(noblock) .side(0)
mov(x, osr) # Keep most recent pull data stashed in X, for recycling by noblock
mov(y, isr) # ISR must be preloaded with PWM count max
label("pwmloop")
jmp(x_not_y, "skip")
nop() .side(1)
label("skip")
jmp(y_dec, "pwmloop")
# fmt: on
class PIOPWM:
def __init__(self, sm_id, pin, max_count, count_freq):
self._sm = StateMachine(sm_id, pwm_prog, freq=2 * count_freq, sideset_base=Pin(pin))
# Use exec() to load max count into ISR
self._sm.put(max_count)
self._sm.exec("pull()")
self._sm.exec("mov(isr, osr)")
self._sm.active(1)
self._max_count = max_count
def set(self, value):
# Minimum value is -1 (completely turn off), 0 actually still produces narrow pulse
value = max(value, -1)
value = min(value, self._max_count)
self._sm.put(value)
# Pin 25 is LED on Pico boards
pwm = PIOPWM(0, 25, max_count=(1 << 16) - 1, count_freq=10_000_000)
while True:
for i in range(256):
pwm.set(i ** 2)
sleep(0.01)

44
examples/rp2/pio_uart_tx.py

@ -0,0 +1,44 @@
# Example using PIO to create a UART TX interface
from machine import Pin
from rp2 import PIO, StateMachine, asm_pio
UART_BAUD = 115200
PIN_BASE = 10
NUM_UARTS = 8
@asm_pio(sideset_init=PIO.OUT_HIGH, out_init=PIO.OUT_HIGH, out_shiftdir=PIO.SHIFT_RIGHT)
def uart_tx():
# fmt: off
# Block with TX deasserted until data available
pull()
# Initialise bit counter, assert start bit for 8 cycles
set(x, 7) .side(0) [7]
# Shift out 8 data bits, 8 execution cycles per bit
label("bitloop")
out(pins, 1) [6]
jmp(x_dec, "bitloop")
# Assert stop bit for 8 cycles total (incl 1 for pull())
nop() .side(1) [6]
# fmt: on
# Now we add 8 UART TXs, on pins 10 to 17. Use the same baud rate for all of them.
uarts = []
for i in range(NUM_UARTS):
sm = StateMachine(
i, uart_tx, freq=8 * UART_BAUD, sideset_base=Pin(PIN_BASE + i), out_base=Pin(PIN_BASE + i)
)
sm.active(1)
uarts.append(sm)
# We can print characters from each UART by pushing them to the TX FIFO
def pio_uart_print(sm, s):
for c in s:
sm.put(ord(c))
# Print a different message from each UART
for i, u in enumerate(uarts):
pio_uart_print(u, "Hello from UART {}!\n".format(i))

59
examples/rp2/pio_ws2812.py

@ -0,0 +1,59 @@
# Example using PIO to drive a set of WS2812 LEDs.
import array, time
from machine import Pin
import rp2
# Configure the number of WS2812 LEDs.
NUM_LEDS = 8
@rp2.asm_pio(
sideset_init=rp2.PIO.OUT_LOW,
out_shiftdir=rp2.PIO.SHIFT_LEFT,
autopull=True,
pull_thresh=24,
)
def ws2812():
# fmt: off
T1 = 2
T2 = 5
T3 = 3
wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]
wrap()
# fmt: on
# Create the StateMachine with the ws2812 program, outputting on Pin(22).
sm = rp2.StateMachine(0, ws2812, freq=8_000_000, sideset_base=Pin(22))
# Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)
# Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])
# Cycle colours.
for i in range(4 * NUM_LEDS):
for j in range(NUM_LEDS):
r = j * 100 // (NUM_LEDS - 1)
b = 100 - j * 100 // (NUM_LEDS - 1)
if j != i % NUM_LEDS:
r >>= 3
b >>= 3
ar[j] = r << 16 | b
sm.put(ar, 8)
time.sleep_ms(50)
# Fade out.
for i in range(24):
for j in range(NUM_LEDS):
ar[j] = ar[j] >> 1 & 0x7F7F7F
sm.put(ar, 8)
time.sleep_ms(50)

25
examples/rp2/pwm_fade.py

@ -0,0 +1,25 @@
# Example using PWM to fade an LED.
import time
from machine import Pin, PWM
# Construct PWM object, with LED on Pin(25).
pwm = PWM(Pin(25))
# Set the PWM frequency.
pwm.freq(1000)
# Fade the LED in and out a few times.
duty = 0
direction = 1
for _ in range(8 * 256):
duty += direction
if duty > 255:
duty = 255
direction = -1
elif duty < 0:
duty = 0
direction = 1
pwm.duty_u16(duty * duty)
time.sleep(0.001)

162
ports/rp2/CMakeLists.txt

@ -0,0 +1,162 @@
cmake_minimum_required(VERSION 3.12)
# Set build type to reduce firmware size
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE MinSizeRel)
endif()
# Set main target and component locations
set(MICROPYTHON_TARGET firmware)
get_filename_component(MPY_DIR "../.." ABSOLUTE)
if (PICO_SDK_PATH_OVERRIDE)
set(PICO_SDK_PATH ${PICO_SDK_PATH_OVERRIDE})
else()
set(PICO_SDK_PATH ../../lib/pico-sdk)
endif()
# Include component cmake fragments
include(micropy_py.cmake)
include(micropy_extmod.cmake)
include(${PICO_SDK_PATH}/pico_sdk_init.cmake)
# Define the top-level project
project(${MICROPYTHON_TARGET})
pico_sdk_init()
add_executable(${MICROPYTHON_TARGET})
set(SOURCE_LIB
${MPY_DIR}/lib/littlefs/lfs1.c
${MPY_DIR}/lib/littlefs/lfs1_util.c
${MPY_DIR}/lib/littlefs/lfs2.c
${MPY_DIR}/lib/littlefs/lfs2_util.c
${MPY_DIR}/lib/mp-readline/readline.c
${MPY_DIR}/lib/oofatfs/ff.c
${MPY_DIR}/lib/oofatfs/ffunicode.c
${MPY_DIR}/lib/timeutils/timeutils.c
${MPY_DIR}/lib/utils/gchelper_m0.s
${MPY_DIR}/lib/utils/gchelper_native.c
${MPY_DIR}/lib/utils/mpirq.c
${MPY_DIR}/lib/utils/stdout_helpers.c
${MPY_DIR}/lib/utils/sys_stdio_mphal.c
${MPY_DIR}/lib/utils/pyexec.c
)
set(SOURCE_DRIVERS
${MPY_DIR}/drivers/bus/softspi.c
)
set(SOURCE_PORT
machine_adc.c
machine_i2c.c
machine_pin.c
machine_pwm.c
machine_spi.c
machine_timer.c
machine_uart.c
machine_wdt.c
main.c
modmachine.c
modrp2.c
moduos.c
modutime.c
mphalport.c
mpthreadport.c
rp2_flash.c
rp2_pio.c
tusb_port.c
uart.c
)
set(SOURCE_QSTR
${SOURCE_PY}
${SOURCE_EXTMOD}
${MPY_DIR}/lib/utils/mpirq.c
${MPY_DIR}/lib/utils/sys_stdio_mphal.c
${PROJECT_SOURCE_DIR}/machine_adc.c
${PROJECT_SOURCE_DIR}/machine_i2c.c
${PROJECT_SOURCE_DIR}/machine_pin.c
${PROJECT_SOURCE_DIR}/machine_pwm.c
${PROJECT_SOURCE_DIR}/machine_spi.c
${PROJECT_SOURCE_DIR}/machine_timer.c
${PROJECT_SOURCE_DIR}/machine_uart.c
${PROJECT_SOURCE_DIR}/machine_wdt.c
${PROJECT_SOURCE_DIR}/modmachine.c
${PROJECT_SOURCE_DIR}/modrp2.c
${PROJECT_SOURCE_DIR}/moduos.c
${PROJECT_SOURCE_DIR}/modutime.c
${PROJECT_SOURCE_DIR}/rp2_flash.c
${PROJECT_SOURCE_DIR}/rp2_pio.c
)
set(MPY_QSTR_DEFS ${PROJECT_SOURCE_DIR}/qstrdefsport.h)
# Define mpy-cross flags and frozen manifest
set(MPY_CROSS_FLAGS -march=armv7m)
set(FROZEN_MANIFEST ${PROJECT_SOURCE_DIR}/manifest.py)
include(micropy_rules.cmake)
target_sources(${MICROPYTHON_TARGET} PRIVATE
${SOURCE_PY}
${SOURCE_EXTMOD}
${SOURCE_LIB}
${SOURCE_DRIVERS}
${SOURCE_PORT}
)
target_include_directories(${MICROPYTHON_TARGET} PRIVATE
"${PROJECT_SOURCE_DIR}"
"${MPY_DIR}"
"${CMAKE_BINARY_DIR}"
)
target_compile_options(${MICROPYTHON_TARGET} PRIVATE
-Wall
#-Werror
-DFFCONF_H=\"${MPY_DIR}/lib/oofatfs/ffconf.h\"
-DLFS1_NO_MALLOC -DLFS1_NO_DEBUG -DLFS1_NO_WARN -DLFS1_NO_ERROR -DLFS1_NO_ASSERT
-DLFS2_NO_MALLOC -DLFS2_NO_DEBUG -DLFS2_NO_WARN -DLFS2_NO_ERROR -DLFS2_NO_ASSERT
)
target_compile_definitions(${MICROPYTHON_TARGET} PRIVATE
PICO_FLOAT_PROPAGATE_NANS=1
PICO_STACK_SIZE=0x2000
PICO_CORE1_STACK_SIZE=0
PICO_PROGRAM_NAME="MicroPython"
PICO_NO_PROGRAM_VERSION_STRING=1 # do it ourselves in main.c
MICROPY_BUILD_TYPE="${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION} ${CMAKE_BUILD_TYPE}"
PICO_NO_BI_STDIO_UART=1 # we call it UART REPL
)
target_link_libraries(${MICROPYTHON_TARGET}
hardware_adc
hardware_dma
hardware_flash
hardware_i2c
hardware_pio
hardware_pwm
hardware_rtc
hardware_spi
hardware_sync
pico_multicore
pico_stdlib_headers
pico_stdlib
tinyusb_device
)
# todo this is a bit brittle, but we want to move a few source files into RAM (which requires
# a linker script modification) until we explicitly add macro calls around the function
# defs to move them into RAM.
if (PICO_ON_DEVICE AND NOT PICO_NO_FLASH AND NOT PICO_COPY_TO_RAM)
pico_set_linker_script(${MICROPYTHON_TARGET} ${CMAKE_CURRENT_LIST_DIR}/memmap_mp.ld)
endif()
pico_add_extra_outputs(${MICROPYTHON_TARGET})
add_custom_command(TARGET ${MICROPYTHON_TARGET}
POST_BUILD
COMMAND arm-none-eabi-size --format=berkeley ${PROJECT_BINARY_DIR}/${MICROPYTHON_TARGET}.elf
VERBATIM
)

14
ports/rp2/Makefile

@ -0,0 +1,14 @@
# Makefile for micropython on Raspberry Pi RP2
#
# This is a simple wrapper around cmake
BUILD = build
$(VERBOSE)MAKESILENT = -s
all:
[ -d $(BUILD) ] || cmake -S . -B $(BUILD) -DPICO_BUILD_DOCS=0
$(MAKE) $(MAKESILENT) -C $(BUILD)
clean:
$(RM) -rf $(BUILD)

100
ports/rp2/README.md

@ -0,0 +1,100 @@
# The RP2 port
This is a port of MicroPython to the Raspberry Pi RP2 series of microcontrollers.
Currently supported features are:
- REPL over USB VCP, and optionally over UART (on GP0/GP1).
- Filesystem on the internal flash, using littlefs2.
- Support for native code generation and inline assembler.
- `utime` module with sleep, time and ticks functions.
- `uos` module with VFS support.
- `machine` module with the following classes: `Pin`, `ADC`, `PWM`, `I2C`, `SPI`,
`SoftI2C`, `SoftSPI`, `Timer`, `UART`, `WDT`.
- `rp2` module with programmable IO (PIO) support.
See the `examples/rp2/` directory for some example code.
## Building
The MicroPython cross-compiler must be built first, which will be used to
pre-compile (freeze) built-in Python code. This cross-compiler is built and
run on the host machine using:
$ make -C mpy-cross
This command should be executed from the root directory of this repository.
All other commands below should be executed from the ports/rp2/ directory.
Building of the RP2 firmware is done entirely using CMake, although a simple
Makefile is also provided as a convenience. To build the firmware run (from
this directory):
$ make clean
$ make
You can also build the standard CMake way. The final firmware is found in
the top-level of the CMake build directory (`build` by default) and is
called `firmware.uf2`.
## Deploying firmware to the device
Firmware can be deployed to the device by putting it into bootloader mode
(hold down BOOTSEL while powering on or resetting) and then copying
`firmware.uf2` to the USB mass storage device that appears.
If MicroPython is already installed then the bootloader can be entered by
executing `import machine; machine.bootloader()` at the REPL.
## Sample code
The following samples can be easily run on the board by entering paste mode
with Ctrl-E at the REPL, then cut-and-pasting the sample code to the REPL, then
executing the code with Ctrl-D.
### Blinky
This blinks the on-board LED on the Pico board at 1.25Hz, using a Timer object
with a callback.
```python
from machine import Pin, Timer
led = Pin(25, Pin.OUT)
tim = Timer()
def tick(timer):
global led
led.toggle()
tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)
```
### PIO blinky
This blinks the on-board LED on the Pico board at 1Hz, using a PIO peripheral and
PIO assembler to directly toggle the LED at the required rate.
```python
from machine import Pin
import rp2
@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def blink_1hz():
# Turn on the LED and delay, taking 1000 cycles.
set(pins, 1)
set(x, 31) [6]
label("delay_high")
nop() [29]
jmp(x_dec, "delay_high")
# Turn off the LED and delay, taking 1000 cycles.
set(pins, 0)
set(x, 31) [6]
label("delay_low")
nop() [29]
jmp(x_dec, "delay_low")
# Create StateMachine(0) with the blink_1hz program, outputting on Pin(25).
sm = rp2.StateMachine(0, blink_1hz, freq=2000, set_base=Pin(25))
sm.active(1)
```
See the `examples/rp2/` directory for further example code.

120
ports/rp2/machine_adc.c

@ -0,0 +1,120 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "hardware/adc.h"
#define ADC_IS_VALID_GPIO(gpio) ((gpio) >= 26 && (gpio) <= 29)
#define ADC_CHANNEL_FROM_GPIO(gpio) ((gpio) - 26)
#define ADC_CHANNEL_TEMPSENSOR (4)
STATIC uint16_t adc_config_and_read_u16(uint32_t channel) {
adc_select_input(channel);
uint32_t raw = adc_read();
const uint32_t bits = 12;
// Scale raw reading to 16 bit value using a Taylor expansion (for 8 <= bits <= 16)
return raw << (16 - bits) | raw >> (2 * bits - 16);
}
/******************************************************************************/
// MicroPython bindings for machine.ADC
const mp_obj_type_t machine_adc_type;
typedef struct _machine_adc_obj_t {
mp_obj_base_t base;
uint32_t channel;
} machine_adc_obj_t;
STATIC void machine_adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<ADC channel=%u>", self->channel);
}
// ADC(id)
STATIC mp_obj_t machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_obj_t source = all_args[0];
uint32_t channel;
if (mp_obj_is_int(source)) {
// Get and validate channel number.
channel = mp_obj_get_int(source);
if (!((channel >= 0 && channel <= ADC_CHANNEL_TEMPSENSOR) || ADC_IS_VALID_GPIO(channel))) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid channel"));
}
} else {
// Get GPIO and check it has ADC capabilities.
channel = mp_hal_get_pin_obj(source);
if (!ADC_IS_VALID_GPIO(channel)) {
mp_raise_ValueError(MP_ERROR_TEXT("Pin doesn't have ADC capabilities"));
}
}
adc_init();
if (ADC_IS_VALID_GPIO(channel)) {
// Configure the GPIO pin in ADC mode.
adc_gpio_init(channel);
channel = ADC_CHANNEL_FROM_GPIO(channel);
} else if (channel == ADC_CHANNEL_TEMPSENSOR) {
// Enable temperature sensor.
adc_set_temp_sensor_enabled(1);
}
// Create ADC object.
machine_adc_obj_t *o = m_new_obj(machine_adc_obj_t);
o->base.type = &machine_adc_type;
o->channel = channel;
return MP_OBJ_FROM_PTR(o);
}
// read_u16()
STATIC mp_obj_t machine_adc_read_u16(mp_obj_t self_in) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(adc_config_and_read_u16(self->channel));
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_read_u16_obj, machine_adc_read_u16);
STATIC const mp_rom_map_elem_t machine_adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_u16), MP_ROM_PTR(&machine_adc_read_u16_obj) },
{ MP_ROM_QSTR(MP_QSTR_CORE_TEMP), MP_ROM_INT(ADC_CHANNEL_TEMPSENSOR) },
};
STATIC MP_DEFINE_CONST_DICT(machine_adc_locals_dict, machine_adc_locals_dict_table);
const mp_obj_type_t machine_adc_type = {
{ &mp_type_type },
.name = MP_QSTR_ADC,
.print = machine_adc_print,
.make_new = machine_adc_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_adc_locals_dict,
};

161
ports/rp2/machine_i2c.c

@ -0,0 +1,161 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/machine_i2c.h"
#include "modmachine.h"
#include "hardware/i2c.h"
#define DEFAULT_I2C_FREQ (400000)
#define DEFAULT_I2C0_SCL (9)
#define DEFAULT_I2C0_SDA (8)
#define DEFAULT_I2C1_SCL (7)
#define DEFAULT_I2C1_SDA (6)
// SDA/SCL on even/odd pins, I2C0/I2C1 on even/odd pairs of pins.
#define IS_VALID_SCL(i2c, pin) (((pin) & 1) == 1 && (((pin) & 2) >> 1) == (i2c))
#define IS_VALID_SDA(i2c, pin) (((pin) & 1) == 0 && (((pin) & 2) >> 1) == (i2c))
typedef struct _machine_i2c_obj_t {
mp_obj_base_t base;
i2c_inst_t *const i2c_inst;
uint8_t i2c_id;
uint8_t scl;
uint8_t sda;
uint32_t freq;
} machine_i2c_obj_t;
STATIC machine_i2c_obj_t machine_i2c_obj[] = {
{{&machine_hw_i2c_type}, i2c0, 0, DEFAULT_I2C0_SCL, DEFAULT_I2C0_SDA, 0},
{{&machine_hw_i2c_type}, i2c1, 1, DEFAULT_I2C1_SCL, DEFAULT_I2C1_SDA, 0},
};
STATIC void machine_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2C(%u, freq=%u, scl=%u, sda=%u)",
self->i2c_id, self->freq, self->scl, self->sda);
}
mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_freq, ARG_scl, ARG_sda };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = DEFAULT_I2C_FREQ} },
{ MP_QSTR_scl, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_sda, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get I2C bus.
int i2c_id = mp_obj_get_int(args[ARG_id].u_obj);
if (i2c_id < 0 || i2c_id >= MP_ARRAY_SIZE(machine_i2c_obj)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("I2C(%d) doesn't exist"), i2c_id);
}
// Get static peripheral object.
machine_i2c_obj_t *self = (machine_i2c_obj_t *)&machine_i2c_obj[i2c_id];
// Set SCL/SDA pins if configured.
if (args[ARG_scl].u_obj != mp_const_none) {
int scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj);
if (!IS_VALID_SCL(self->i2c_id, scl)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SCL pin"));
}
self->scl = scl;
}
if (args[ARG_sda].u_obj != mp_const_none) {
int sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj);
if (!IS_VALID_SDA(self->i2c_id, sda)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SDA pin"));
}
self->sda = sda;
}
// Initialise the I2C peripheral if any arguments given, or it was not initialised previously.
if (n_args > 1 || n_kw > 0 || self->freq == 0) {
self->freq = args[ARG_freq].u_int;
i2c_init(self->i2c_inst, self->freq);
self->freq = i2c_set_baudrate(self->i2c_inst, self->freq);
gpio_set_function(self->scl, GPIO_FUNC_I2C);
gpio_set_function(self->sda, GPIO_FUNC_I2C);
gpio_set_pulls(self->scl, true, 0);
gpio_set_pulls(self->sda, true, 0);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC int machine_i2c_transfer_single(mp_obj_base_t *self_in, uint16_t addr, size_t len, uint8_t *buf, unsigned int flags) {
machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in;
int ret;
bool nostop = !(flags & MP_MACHINE_I2C_FLAG_STOP);
if (flags & MP_MACHINE_I2C_FLAG_READ) {
ret = i2c_read_blocking(self->i2c_inst, addr, buf, len, nostop);
} else {
if (len <= 2) {
// Workaround issue with hardware I2C not accepting short writes.
mp_machine_soft_i2c_obj_t soft_i2c = {
.base = { &mp_machine_soft_i2c_type },
.us_delay = 500000 / self->freq + 1,
.us_timeout = 255,
.scl = self->scl,
.sda = self->sda,
};
mp_machine_i2c_buf_t bufs = {
.len = len,
.buf = buf,
};
mp_hal_pin_open_drain(self->scl);
mp_hal_pin_open_drain(self->sda);
ret = mp_machine_soft_i2c_transfer(&soft_i2c.base, addr, 1, &bufs, flags);
gpio_set_function(self->scl, GPIO_FUNC_I2C);
gpio_set_function(self->sda, GPIO_FUNC_I2C);
} else {
ret = i2c_write_blocking(self->i2c_inst, addr, buf, len, nostop);
}
}
return (ret < 0) ? -MP_EIO : ret;
}
STATIC const mp_machine_i2c_p_t machine_i2c_p = {
.transfer = mp_machine_i2c_transfer_adaptor,
.transfer_single = machine_i2c_transfer_single,
};
const mp_obj_type_t machine_hw_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.print = machine_i2c_print,
.make_new = machine_i2c_make_new,
.protocol = &machine_i2c_p,
.locals_dict = (mp_obj_dict_t *)&mp_machine_i2c_locals_dict,
};

449
ports/rp2/machine_pin.c

@ -0,0 +1,449 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "lib/utils/mpirq.h"
#include "modmachine.h"
#include "extmod/virtpin.h"
#include "hardware/irq.h"
#include "hardware/regs/intctrl.h"
#include "hardware/structs/iobank0.h"
#include "hardware/structs/padsbank0.h"
#define GPIO_MODE_IN (0)
#define GPIO_MODE_OUT (1)
#define GPIO_MODE_OPEN_DRAIN (2)
#define GPIO_MODE_ALT (3)
// These can be or'd together.
#define GPIO_PULL_UP (1)
#define GPIO_PULL_DOWN (2)
#define GPIO_IRQ_ALL (0xf)
// Macros to access the state of the hardware.
#define GPIO_GET_FUNCSEL(id) ((iobank0_hw->io[(id)].ctrl & IO_BANK0_GPIO0_CTRL_FUNCSEL_BITS) >> IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB)
#define GPIO_IS_OUT(id) (sio_hw->gpio_oe & (1 << (id)))
#define GPIO_IS_PULL_UP(id) (padsbank0_hw->io[(id)] & PADS_BANK0_GPIO0_PUE_BITS)
#define GPIO_IS_PULL_DOWN(id) (padsbank0_hw->io[(id)] & PADS_BANK0_GPIO0_PDE_BITS)
// Open drain behaviour is simulated.
#define GPIO_IS_OPEN_DRAIN(id) (machine_pin_open_drain_mask & (1 << (id)))
typedef struct _machine_pin_obj_t {
mp_obj_base_t base;
uint32_t id;
} machine_pin_obj_t;
typedef struct _machine_pin_irq_obj_t {
mp_irq_obj_t base;
uint32_t flags;
uint32_t trigger;
} machine_pin_irq_obj_t;
STATIC const mp_irq_methods_t machine_pin_irq_methods;
STATIC const machine_pin_obj_t machine_pin_obj[N_GPIOS] = {
{{&machine_pin_type}, 0},
{{&machine_pin_type}, 1},
{{&machine_pin_type}, 2},
{{&machine_pin_type}, 3},
{{&machine_pin_type}, 4},
{{&machine_pin_type}, 5},
{{&machine_pin_type}, 6},
{{&machine_pin_type}, 7},
{{&machine_pin_type}, 8},
{{&machine_pin_type}, 9},
{{&machine_pin_type}, 10},
{{&machine_pin_type}, 11},
{{&machine_pin_type}, 12},
{{&machine_pin_type}, 13},
{{&machine_pin_type}, 14},
{{&machine_pin_type}, 15},
{{&machine_pin_type}, 16},
{{&machine_pin_type}, 17},
{{&machine_pin_type}, 18},
{{&machine_pin_type}, 19},
{{&machine_pin_type}, 20},
{{&machine_pin_type}, 21},
{{&machine_pin_type}, 22},
{{&machine_pin_type}, 23},
{{&machine_pin_type}, 24},
{{&machine_pin_type}, 25},
{{&machine_pin_type}, 26},
{{&machine_pin_type}, 27},
{{&machine_pin_type}, 28},
{{&machine_pin_type}, 29},
};
// Mask with "1" indicating that the corresponding pin is in simulated open-drain mode.
uint32_t machine_pin_open_drain_mask;
STATIC void gpio_irq(void) {
for (int i = 0; i < 4; ++i) {
uint32_t intr = iobank0_hw->intr[i];
if (intr) {
for (int j = 0; j < 8; ++j) {
if (intr & 0xf) {
uint32_t gpio = 8 * i + j;
gpio_acknowledge_irq(gpio, intr & 0xf);
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_obj[gpio]);
if (irq != NULL && (intr & irq->trigger)) {
irq->flags = intr & irq->trigger;
mp_irq_handler(&irq->base);
}
}
intr >>= 4;
}
}
}
}
void machine_pin_init(void) {
memset(MP_STATE_PORT(machine_pin_irq_obj), 0, sizeof(MP_STATE_PORT(machine_pin_irq_obj)));
irq_set_exclusive_handler(IO_IRQ_BANK0, gpio_irq);
irq_set_enabled(IO_IRQ_BANK0, true);
}
void machine_pin_deinit(void) {
for (int i = 0; i < N_GPIOS; ++i) {
gpio_set_irq_enabled(i, GPIO_IRQ_ALL, false);
}
irq_set_enabled(IO_IRQ_BANK0, false);
irq_remove_handler(IO_IRQ_BANK0, gpio_irq);
}
STATIC void machine_pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pin_obj_t *self = self_in;
uint funcsel = GPIO_GET_FUNCSEL(self->id);
qstr mode_qst;
if (funcsel == GPIO_FUNC_SIO) {
if (GPIO_IS_OPEN_DRAIN(self->id)) {
mode_qst = MP_QSTR_OPEN_DRAIN;
} else if (GPIO_IS_OUT(self->id)) {
mode_qst = MP_QSTR_OUT;
} else {
mode_qst = MP_QSTR_IN;
}
} else {
mode_qst = MP_QSTR_ALT;
}
mp_printf(print, "Pin(%u, mode=%q", self->id, mode_qst);
bool pull_up = false;
if (GPIO_IS_PULL_UP(self->id)) {
mp_printf(print, ", pull=%q", MP_QSTR_PULL_UP);
pull_up = true;
}
if (GPIO_IS_PULL_DOWN(self->id)) {
if (pull_up) {
mp_printf(print, "|%q", MP_QSTR_PULL_DOWN);
} else {
mp_printf(print, ", pull=%q", MP_QSTR_PULL_DOWN);
}
}
if (funcsel != GPIO_FUNC_SIO) {
mp_printf(print, ", alt=%u", funcsel);
}
mp_printf(print, ")");
}
// pin.init(mode, pull=None, *, value=None, alt=FUNC_SIO)
STATIC mp_obj_t machine_pin_obj_init_helper(const machine_pin_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_pull, ARG_value, ARG_alt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_pull, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}},
{ MP_QSTR_alt, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = GPIO_FUNC_SIO}},
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set initial value (do this before configuring mode/pull)
if (args[ARG_value].u_obj != mp_const_none) {
gpio_put(self->id, mp_obj_is_true(args[ARG_value].u_obj));
}
// configure mode
if (args[ARG_mode].u_obj != mp_const_none) {
mp_int_t mode = mp_obj_get_int(args[ARG_mode].u_obj);
if (mode == GPIO_MODE_IN) {
mp_hal_pin_input(self->id);
} else if (mode == GPIO_MODE_OUT) {
mp_hal_pin_output(self->id);
} else if (mode == GPIO_MODE_OPEN_DRAIN) {
mp_hal_pin_open_drain(self->id);
} else {
// Alternate function.
gpio_set_function(self->id, args[ARG_alt].u_int);
machine_pin_open_drain_mask &= ~(1 << self->id);
}
}
// configure pull (unconditionally because None means no-pull)
uint32_t pull = 0;
if (args[ARG_pull].u_obj != mp_const_none) {
pull = mp_obj_get_int(args[ARG_pull].u_obj);
}
gpio_set_pulls(self->id, pull & GPIO_PULL_UP, pull & GPIO_PULL_DOWN);
return mp_const_none;
}
// constructor(id, ...)
mp_obj_t mp_pin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get the wanted pin object
int wanted_pin = mp_obj_get_int(args[0]);
if (!(0 <= wanted_pin && wanted_pin < MP_ARRAY_SIZE(machine_pin_obj))) {
mp_raise_ValueError("invalid pin");
}
const machine_pin_obj_t *self = &machine_pin_obj[wanted_pin];
if (n_args > 1 || n_kw > 0) {
// pin mode given, so configure this GPIO
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_pin_obj_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(self);
}
// fast method for getting/setting pin value
STATIC mp_obj_t machine_pin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
machine_pin_obj_t *self = self_in;
if (n_args == 0) {
// get pin
return MP_OBJ_NEW_SMALL_INT(gpio_get(self->id));
} else {
// set pin
bool value = mp_obj_is_true(args[0]);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
MP_STATIC_ASSERT(GPIO_IN == 0 && GPIO_OUT == 1);
gpio_set_dir(self->id, 1 - value);
} else {
gpio_put(self->id, value);
}
return mp_const_none;
}
}
// pin.init(mode, pull)
STATIC mp_obj_t machine_pin_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return machine_pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_pin_init_obj, 1, machine_pin_obj_init);
// pin.value([value])
STATIC mp_obj_t machine_pin_value(size_t n_args, const mp_obj_t *args) {
return machine_pin_call(args[0], n_args - 1, 0, args + 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pin_value_obj, 1, 2, machine_pin_value);
// pin.low()
STATIC mp_obj_t machine_pin_low(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
gpio_set_dir(self->id, GPIO_OUT);
} else {
gpio_clr_mask(1u << self->id);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_low_obj, machine_pin_low);
// pin.high()
STATIC mp_obj_t machine_pin_high(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
gpio_set_dir(self->id, GPIO_IN);
} else {
gpio_set_mask(1u << self->id);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_high_obj, machine_pin_high);
// pin.toggle()
STATIC mp_obj_t machine_pin_toggle(mp_obj_t self_in) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (GPIO_IS_OPEN_DRAIN(self->id)) {
if (GPIO_IS_OUT(self->id)) {
gpio_set_dir(self->id, GPIO_IN);
} else {
gpio_set_dir(self->id, GPIO_OUT);
}
} else {
gpio_xor_mask(1u << self->id);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pin_toggle_obj, machine_pin_toggle);
// pin.irq(handler=None, trigger=IRQ_FALLING|IRQ_RISING, hard=False)
STATIC mp_obj_t machine_pin_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_handler, ARG_trigger, ARG_hard };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = GPIO_IRQ_EDGE_FALL | GPIO_IRQ_EDGE_RISE} },
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
};
machine_pin_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the IRQ object.
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_obj[self->id]);
// Allocate the IRQ object if it doesn't already exist.
if (irq == NULL) {
irq = m_new_obj(machine_pin_irq_obj_t);
irq->base.base.type = &mp_irq_type;
irq->base.methods = (mp_irq_methods_t *)&machine_pin_irq_methods;
irq->base.parent = MP_OBJ_FROM_PTR(self);
irq->base.handler = mp_const_none;
irq->base.ishard = false;
MP_STATE_PORT(machine_pin_irq_obj[self->id]) = irq;
}
if (n_args > 1 || kw_args->used != 0) {
// Configure IRQ.
// Disable all IRQs while data is updated.
gpio_set_irq_enabled(self->id, GPIO_IRQ_ALL, false);
// Update IRQ data.
irq->base.handler = args[ARG_handler].u_obj;
irq->base.ishard = args[ARG_hard].u_bool;
irq->flags = 0;
irq->trigger = args[ARG_trigger].u_int;
// Enable IRQ if a handler is given.
if (args[ARG_handler].u_obj != mp_const_none) {
gpio_set_irq_enabled(self->id, args[ARG_trigger].u_int, true);
}
}
return MP_OBJ_FROM_PTR(irq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_pin_irq_obj, 1, machine_pin_irq);
STATIC const mp_rom_map_elem_t machine_pin_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_pin_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&machine_pin_value_obj) },
{ MP_ROM_QSTR(MP_QSTR_low), MP_ROM_PTR(&machine_pin_low_obj) },
{ MP_ROM_QSTR(MP_QSTR_high), MP_ROM_PTR(&machine_pin_high_obj) },
{ MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&machine_pin_low_obj) },
{ MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&machine_pin_high_obj) },
{ MP_ROM_QSTR(MP_QSTR_toggle), MP_ROM_PTR(&machine_pin_toggle_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_pin_irq_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_IN), MP_ROM_INT(GPIO_MODE_IN) },
{ MP_ROM_QSTR(MP_QSTR_OUT), MP_ROM_INT(GPIO_MODE_OUT) },
{ MP_ROM_QSTR(MP_QSTR_OPEN_DRAIN), MP_ROM_INT(GPIO_MODE_OPEN_DRAIN) },
{ MP_ROM_QSTR(MP_QSTR_ALT), MP_ROM_INT(GPIO_MODE_ALT) },
{ MP_ROM_QSTR(MP_QSTR_PULL_UP), MP_ROM_INT(GPIO_PULL_UP) },
{ MP_ROM_QSTR(MP_QSTR_PULL_DOWN), MP_ROM_INT(GPIO_PULL_DOWN) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_RISING), MP_ROM_INT(GPIO_IRQ_EDGE_RISE) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_FALLING), MP_ROM_INT(GPIO_IRQ_EDGE_FALL) },
};
STATIC MP_DEFINE_CONST_DICT(machine_pin_locals_dict, machine_pin_locals_dict_table);
STATIC mp_uint_t pin_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
(void)errcode;
machine_pin_obj_t *self = self_in;
switch (request) {
case MP_PIN_READ: {
return gpio_get(self->id);
}
case MP_PIN_WRITE: {
gpio_put(self->id, arg);
return 0;
}
}
return -1;
}
STATIC const mp_pin_p_t pin_pin_p = {
.ioctl = pin_ioctl,
};
const mp_obj_type_t machine_pin_type = {
{ &mp_type_type },
.name = MP_QSTR_Pin,
.print = machine_pin_print,
.make_new = mp_pin_make_new,
.call = machine_pin_call,
.protocol = &pin_pin_p,
.locals_dict = (mp_obj_t)&machine_pin_locals_dict,
};
STATIC mp_uint_t machine_pin_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_obj[self->id]);
gpio_set_irq_enabled(self->id, GPIO_IRQ_ALL, false);
irq->flags = 0;
irq->trigger = new_trigger;
gpio_set_irq_enabled(self->id, new_trigger, true);
return 0;
}
STATIC mp_uint_t machine_pin_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in);
machine_pin_irq_obj_t *irq = MP_STATE_PORT(machine_pin_irq_obj[self->id]);
if (info_type == MP_IRQ_INFO_FLAGS) {
return irq->flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return irq->trigger;
}
return 0;
}
STATIC const mp_irq_methods_t machine_pin_irq_methods = {
.trigger = machine_pin_irq_trigger,
.info = machine_pin_irq_info,
};
mp_hal_pin_obj_t mp_hal_get_pin_obj(mp_obj_t obj) {
if (!mp_obj_is_type(obj, &machine_pin_type)) {
mp_raise_ValueError(MP_ERROR_TEXT("expecting a Pin"));
}
machine_pin_obj_t *pin = MP_OBJ_TO_PTR(obj);
return pin->id;
}

197
ports/rp2/machine_pwm.c

@ -0,0 +1,197 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "modmachine.h"
#include "hardware/clocks.h"
#include "hardware/pwm.h"
/******************************************************************************/
// MicroPython bindings for machine.PWM
const mp_obj_type_t machine_pwm_type;
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
uint8_t slice;
uint8_t channel;
} machine_pwm_obj_t;
STATIC machine_pwm_obj_t machine_pwm_obj[] = {
{{&machine_pwm_type}, 0, PWM_CHAN_A},
{{&machine_pwm_type}, 0, PWM_CHAN_B},
{{&machine_pwm_type}, 1, PWM_CHAN_A},
{{&machine_pwm_type}, 1, PWM_CHAN_B},
{{&machine_pwm_type}, 2, PWM_CHAN_A},
{{&machine_pwm_type}, 2, PWM_CHAN_B},
{{&machine_pwm_type}, 3, PWM_CHAN_A},
{{&machine_pwm_type}, 3, PWM_CHAN_B},
{{&machine_pwm_type}, 4, PWM_CHAN_A},
{{&machine_pwm_type}, 4, PWM_CHAN_B},
{{&machine_pwm_type}, 5, PWM_CHAN_A},
{{&machine_pwm_type}, 5, PWM_CHAN_B},
{{&machine_pwm_type}, 6, PWM_CHAN_A},
{{&machine_pwm_type}, 6, PWM_CHAN_B},
{{&machine_pwm_type}, 7, PWM_CHAN_A},
{{&machine_pwm_type}, 7, PWM_CHAN_B},
};
STATIC void machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<PWM slice=%u channel=%u>", self->slice, self->channel);
}
// PWM(pin)
STATIC mp_obj_t machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// Get GPIO to connect to PWM.
uint32_t gpio = mp_hal_get_pin_obj(all_args[0]);
// Get static peripheral object.
uint slice = pwm_gpio_to_slice_num(gpio);
uint8_t channel = pwm_gpio_to_channel(gpio);
const machine_pwm_obj_t *self = &machine_pwm_obj[slice * 2 + channel];
// Select PWM function for given GPIO.
gpio_set_function(gpio, GPIO_FUNC_PWM);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_pwm_deinit(mp_obj_t self_in) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
pwm_set_enabled(self->slice, false);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pwm_deinit_obj, machine_pwm_deinit);
// PWM.freq([value])
STATIC mp_obj_t machine_pwm_freq(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t source_hz = clock_get_hz(clk_sys);
if (n_args == 1) {
// Get frequency.
uint32_t div16 = pwm_hw->slice[self->slice].div;
uint32_t top = pwm_hw->slice[self->slice].top;
uint32_t pwm_freq = 16 * source_hz / div16 / top;
return MP_OBJ_NEW_SMALL_INT(pwm_freq);
} else {
// Set the frequency, making "top" as large as possible for maximum resolution.
// Maximum "top" is set at 65534 to be able to achieve 100% duty with 65535.
#define TOP_MAX 65534
mp_int_t freq = mp_obj_get_int(args[1]);
uint32_t div16_top = 16 * source_hz / freq;
uint32_t top = 1;
for (;;) {
// Try a few small prime factors to get close to the desired frequency.
if (div16_top >= 16 * 5 && div16_top % 5 == 0 && top * 5 <= TOP_MAX) {
div16_top /= 5;
top *= 5;
} else if (div16_top >= 16 * 3 && div16_top % 3 == 0 && top * 3 <= TOP_MAX) {
div16_top /= 3;
top *= 3;
} else if (div16_top >= 16 * 2 && top * 2 <= TOP_MAX) {
div16_top /= 2;
top *= 2;
} else {
break;
}
}
if (div16_top < 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too large"));
} else if (div16_top >= 256 * 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too small"));
}
pwm_hw->slice[self->slice].div = div16_top;
pwm_hw->slice[self->slice].top = top;
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_freq_obj, 1, 2, machine_pwm_freq);
// PWM.duty_u16([value])
STATIC mp_obj_t machine_pwm_duty_u16(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t top = pwm_hw->slice[self->slice].top;
if (n_args == 1) {
// Get duty cycle.
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
return MP_OBJ_NEW_SMALL_INT(cc * 65535 / (top + 1));
} else {
// Set duty cycle.
mp_int_t duty_u16 = mp_obj_get_int(args[1]);
uint32_t cc = duty_u16 * (top + 1) / 65535;
pwm_set_chan_level(self->slice, self->channel, cc);
pwm_set_enabled(self->slice, true);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_duty_u16_obj, 1, 2, machine_pwm_duty_u16);
// PWM.duty_ns([value])
STATIC mp_obj_t machine_pwm_duty_ns(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t source_hz = clock_get_hz(clk_sys);
uint32_t slice_hz = 16 * source_hz / pwm_hw->slice[self->slice].div;
if (n_args == 1) {
// Get duty cycle.
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
return MP_OBJ_NEW_SMALL_INT((uint64_t)cc * 1000000000ULL / slice_hz);
} else {
// Set duty cycle.
mp_int_t duty_ns = mp_obj_get_int(args[1]);
uint32_t cc = (uint64_t)duty_ns * slice_hz / 1000000000ULL;
if (cc > 65535) {
mp_raise_ValueError(MP_ERROR_TEXT("duty larger than period"));
}
pwm_set_chan_level(self->slice, self->channel, cc);
pwm_set_enabled(self->slice, true);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_duty_ns_obj, 1, 2, machine_pwm_duty_ns);
STATIC const mp_rom_map_elem_t machine_pwm_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_pwm_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_pwm_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty_u16), MP_ROM_PTR(&machine_pwm_duty_u16_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty_ns), MP_ROM_PTR(&machine_pwm_duty_ns_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_pwm_locals_dict, machine_pwm_locals_dict_table);
const mp_obj_type_t machine_pwm_type = {
{ &mp_type_type },
.name = MP_QSTR_PWM,
.print = machine_pwm_print,
.make_new = machine_pwm_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_pwm_locals_dict,
};

278
ports/rp2/machine_spi.c

@ -0,0 +1,278 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "hardware/spi.h"
#include "hardware/dma.h"
#define DEFAULT_SPI_BAUDRATE (1000000)
#define DEFAULT_SPI_POLARITY (0)
#define DEFAULT_SPI_PHASE (0)
#define DEFAULT_SPI_BITS (8)
#define DEFAULT_SPI_FIRSTBIT (SPI_MSB_FIRST)
#define DEFAULT_SPI0_SCK (6)
#define DEFAULT_SPI0_MOSI (7)
#define DEFAULT_SPI0_MISO (4)
#define DEFAULT_SPI1_SCK (10)
#define DEFAULT_SPI1_MOSI (11)
#define DEFAULT_SPI1_MISO (8)
#define IS_VALID_PERIPH(spi, pin) ((((pin) & 8) >> 3) == (spi))
#define IS_VALID_SCK(spi, pin) (((pin) & 3) == 2 && IS_VALID_PERIPH(spi, pin))
#define IS_VALID_MOSI(spi, pin) (((pin) & 3) == 3 && IS_VALID_PERIPH(spi, pin))
#define IS_VALID_MISO(spi, pin) (((pin) & 3) == 0 && IS_VALID_PERIPH(spi, pin))
typedef struct _machine_spi_obj_t {
mp_obj_base_t base;
spi_inst_t *const spi_inst;
uint8_t spi_id;
uint8_t polarity;
uint8_t phase;
uint8_t bits;
uint8_t firstbit;
uint8_t sck;
uint8_t mosi;
uint8_t miso;
uint32_t baudrate;
} machine_spi_obj_t;
STATIC machine_spi_obj_t machine_spi_obj[] = {
{
{&machine_spi_type}, spi0, 0,
DEFAULT_SPI_POLARITY, DEFAULT_SPI_PHASE, DEFAULT_SPI_BITS, DEFAULT_SPI_FIRSTBIT,
DEFAULT_SPI0_SCK, DEFAULT_SPI0_MOSI, DEFAULT_SPI0_MISO,
0,
},
{
{&machine_spi_type}, spi1, 1,
DEFAULT_SPI_POLARITY, DEFAULT_SPI_PHASE, DEFAULT_SPI_BITS, DEFAULT_SPI_FIRSTBIT,
DEFAULT_SPI1_SCK, DEFAULT_SPI1_MOSI, DEFAULT_SPI1_MISO,
0,
},
};
STATIC void machine_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(%u, baudrate=%u, polarity=%u, phase=%u, bits=%u, sck=%u, mosi=%u, miso=%u)",
self->spi_id, self->baudrate, self->polarity, self->phase, self->bits,
self->sck, self->mosi, self->miso);
}
mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = DEFAULT_SPI_BAUDRATE} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_POLARITY} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_PHASE} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_BITS} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_SPI_FIRSTBIT} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the SPI bus id.
int spi_id = mp_obj_get_int(args[ARG_id].u_obj);
if (spi_id < 0 || spi_id >= MP_ARRAY_SIZE(machine_spi_obj)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
// Get static peripheral object.
machine_spi_obj_t *self = (machine_spi_obj_t *)&machine_spi_obj[spi_id];
// Set SCK/MOSI/MISO pins if configured.
if (args[ARG_sck].u_obj != mp_const_none) {
int sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
if (!IS_VALID_SCK(self->spi_id, sck)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad SCK pin"));
}
self->sck = sck;
}
if (args[ARG_mosi].u_obj != mp_const_none) {
int mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
if (!IS_VALID_MOSI(self->spi_id, mosi)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad MOSI pin"));
}
self->mosi = mosi;
}
if (args[ARG_miso].u_obj != mp_const_none) {
int miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
if (!IS_VALID_MISO(self->spi_id, miso)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad MISO pin"));
}
self->miso = miso;
}
// Initialise the SPI peripheral if any arguments given, or it was not initialised previously.
if (n_args > 1 || n_kw > 0 || self->baudrate == 0) {
self->baudrate = args[ARG_baudrate].u_int;
self->polarity = args[ARG_polarity].u_int;
self->phase = args[ARG_phase].u_int;
self->bits = args[ARG_bits].u_int;
self->firstbit = args[ARG_firstbit].u_int;
if (self->firstbit == SPI_LSB_FIRST) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("LSB"));
}
spi_init(self->spi_inst, self->baudrate);
self->baudrate = spi_set_baudrate(self->spi_inst, self->baudrate);
spi_set_format(self->spi_inst, self->bits, self->polarity, self->phase, self->firstbit);
gpio_set_function(self->sck, GPIO_FUNC_SPI);
gpio_set_function(self->miso, GPIO_FUNC_SPI);
gpio_set_function(self->mosi, GPIO_FUNC_SPI);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC void machine_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse the arguments.
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Reconfigure the baudrate if requested.
if (args[ARG_baudrate].u_int != -1) {
self->baudrate = spi_set_baudrate(self->spi_inst, args[ARG_baudrate].u_int);
}
// Reconfigure the format if requested.
bool set_format = false;
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
set_format = true;
}
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
set_format = true;
}
if (args[ARG_bits].u_int != -1) {
self->bits = args[ARG_bits].u_int;
set_format = true;
}
if (args[ARG_firstbit].u_int != -1) {
self->firstbit = args[ARG_firstbit].u_int;
if (self->firstbit == SPI_LSB_FIRST) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("LSB"));
}
}
if (set_format) {
spi_set_format(self->spi_inst, self->bits, self->polarity, self->phase, self->firstbit);
}
}
STATIC void machine_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
// Use DMA for large transfers if channels are available
const size_t dma_min_size_threshold = 32;
int chan_tx = -1;
int chan_rx = -1;
if (len >= dma_min_size_threshold) {
// Use two DMA channels to service the two FIFOs
chan_tx = dma_claim_unused_channel(false);
chan_rx = dma_claim_unused_channel(false);
}
bool use_dma = chan_rx >= 0 && chan_tx >= 0;
// note src is guaranteed to be non-NULL
bool write_only = dest == NULL;
if (use_dma) {
uint8_t dev_null;
dma_channel_config c = dma_channel_get_default_config(chan_tx);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_dreq(&c, spi_get_index(self->spi_inst) ? DREQ_SPI1_TX : DREQ_SPI0_TX);
dma_channel_configure(chan_tx, &c,
&spi_get_hw(self->spi_inst)->dr,
src,
len,
false);
c = dma_channel_get_default_config(chan_rx);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_dreq(&c, spi_get_index(self->spi_inst) ? DREQ_SPI1_RX : DREQ_SPI0_RX);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, !write_only);
dma_channel_configure(chan_rx, &c,
write_only ? &dev_null : dest,
&spi_get_hw(self->spi_inst)->dr,
len,
false);
dma_start_channel_mask((1u << chan_rx) | (1u << chan_tx));
dma_channel_wait_for_finish_blocking(chan_rx);
dma_channel_wait_for_finish_blocking(chan_tx);
}
// If we have claimed only one channel successfully, we should release immediately
if (chan_rx >= 0) {
dma_channel_unclaim(chan_rx);
}
if (chan_tx >= 0) {
dma_channel_unclaim(chan_tx);
}
if (!use_dma) {
// Use software for small transfers, or if couldn't claim two DMA channels
if (write_only) {
spi_write_blocking(self->spi_inst, src, len);
} else {
spi_write_read_blocking(self->spi_inst, src, dest, len);
}
}
}
STATIC const mp_machine_spi_p_t machine_spi_p = {
.init = machine_spi_init,
.transfer = machine_spi_transfer,
};
const mp_obj_type_t machine_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = machine_spi_print,
.make_new = machine_spi_make_new,
.protocol = &machine_spi_p,
.locals_dict = (mp_obj_dict_t *)&mp_machine_spi_locals_dict,
};

165
ports/rp2/machine_timer.c

@ -0,0 +1,165 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "pico/time.h"
#define ALARM_ID_INVALID (-1)
#define TIMER_MODE_ONE_SHOT (0)
#define TIMER_MODE_PERIODIC (1)
typedef struct _machine_timer_obj_t {
mp_obj_base_t base;
struct alarm_pool *pool;
alarm_id_t alarm_id;
uint32_t mode;
uint64_t delta_us; // for periodic mode
mp_obj_t callback;
} machine_timer_obj_t;
const mp_obj_type_t machine_timer_type;
STATIC int64_t alarm_callback(alarm_id_t id, void *user_data) {
machine_timer_obj_t *self = user_data;
mp_sched_schedule(self->callback, MP_OBJ_FROM_PTR(self));
if (self->mode == TIMER_MODE_ONE_SHOT) {
return 0;
} else {
return -self->delta_us;
}
}
STATIC void machine_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
qstr mode = self->mode == TIMER_MODE_ONE_SHOT ? MP_QSTR_ONE_SHOT : MP_QSTR_PERIODIC;
mp_printf(print, "Timer(mode=%q, period=%u, tick_hz=1000000)", mode, self->delta_us);
}
STATIC mp_obj_t machine_timer_init_helper(machine_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_callback, ARG_period, ARG_tick_hz, ARG_freq, };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIMER_MODE_PERIODIC} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->mode = args[ARG_mode].u_int;
if (args[ARG_freq].u_obj != mp_const_none) {
// Frequency specified in Hz
#if MICROPY_PY_BUILTINS_FLOAT
self->delta_us = (uint64_t)(MICROPY_FLOAT_CONST(1000000.0) / mp_obj_get_float(args[ARG_freq].u_obj));
#else
self->delta_us = 1000000 / mp_obj_get_int(args[ARG_freq].u_obj);
#endif
} else {
// Period specified
self->delta_us = (uint64_t)args[ARG_period].u_int * 1000000 / args[ARG_tick_hz].u_int;
}
if (self->delta_us < 1) {
self->delta_us = 1;
}
self->callback = args[ARG_callback].u_obj;
self->alarm_id = alarm_pool_add_alarm_in_us(self->pool, self->delta_us, alarm_callback, self, true);
if (self->alarm_id == -1) {
mp_raise_OSError(MP_ENOMEM);
}
return mp_const_none;
}
STATIC mp_obj_t machine_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
machine_timer_obj_t *self = m_new_obj_with_finaliser(machine_timer_obj_t);
self->base.type = &machine_timer_type;
self->pool = alarm_pool_get_default();
self->alarm_id = ALARM_ID_INVALID;
// Get timer id (only soft timer (-1) supported at the moment)
mp_int_t id = -1;
if (n_args > 0) {
id = mp_obj_get_int(args[0]);
--n_args;
++args;
}
if (id != -1) {
mp_raise_ValueError(MP_ERROR_TEXT("Timer doesn't exist"));
}
if (n_args > 0 || n_kw > 0) {
// Start the timer
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_timer_init_helper(self, n_args, args, &kw_args);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
machine_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->alarm_id != ALARM_ID_INVALID) {
alarm_pool_cancel_alarm(self->pool, self->alarm_id);
self->alarm_id = ALARM_ID_INVALID;
}
return machine_timer_init_helper(self, n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_timer_init_obj, 1, machine_timer_init);
STATIC mp_obj_t machine_timer_deinit(mp_obj_t self_in) {
machine_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->alarm_id != ALARM_ID_INVALID) {
alarm_pool_cancel_alarm(self->pool, self->alarm_id);
self->alarm_id = ALARM_ID_INVALID;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_timer_deinit_obj, machine_timer_deinit);
STATIC const mp_rom_map_elem_t machine_timer_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_timer_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(TIMER_MODE_ONE_SHOT) },
{ MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(TIMER_MODE_PERIODIC) },
};
STATIC MP_DEFINE_CONST_DICT(machine_timer_locals_dict, machine_timer_locals_dict_table);
const mp_obj_type_t machine_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = machine_timer_print,
.make_new = machine_timer_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_timer_locals_dict,
};

246
ports/rp2/machine_uart.c

@ -0,0 +1,246 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "modmachine.h"
#include "hardware/uart.h"
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_UART_BITS (8)
#define DEFAULT_UART_STOP (1)
#define DEFAULT_UART0_TX (0)
#define DEFAULT_UART0_RX (1)
#define DEFAULT_UART1_TX (4)
#define DEFAULT_UART1_RX (5)
#define IS_VALID_PERIPH(uart, pin) (((((pin) + 4) & 8) >> 3) == (uart))
#define IS_VALID_TX(uart, pin) (((pin) & 3) == 0 && IS_VALID_PERIPH(uart, pin))
#define IS_VALID_RX(uart, pin) (((pin) & 3) == 1 && IS_VALID_PERIPH(uart, pin))
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
uart_inst_t *const uart;
uint8_t uart_id;
uint32_t baudrate;
uint8_t bits;
uart_parity_t parity;
uint8_t stop;
uint8_t tx;
uint8_t rx;
} machine_uart_obj_t;
STATIC machine_uart_obj_t machine_uart_obj[] = {
{{&machine_uart_type}, uart0, 0, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, DEFAULT_UART0_TX, DEFAULT_UART0_RX},
{{&machine_uart_type}, uart1, 1, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, DEFAULT_UART1_TX, DEFAULT_UART1_RX},
};
STATIC const char *_parity_name[] = {"None", "0", "1"};
/******************************************************************************/
// MicroPython bindings for UART
STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d)",
self->uart_id, self->baudrate, self->bits, _parity_name[self->parity],
self->stop, self->tx, self->rx);
}
STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get UART bus.
int uart_id = mp_obj_get_int(args[ARG_id].u_obj);
if (uart_id < 0 || uart_id >= MP_ARRAY_SIZE(machine_uart_obj)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Get static peripheral object.
machine_uart_obj_t *self = (machine_uart_obj_t *)&machine_uart_obj[uart_id];
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->baudrate = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->bits = args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->parity = UART_PARITY_NONE;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->parity = UART_PARITY_ODD;
} else {
self->parity = UART_PARITY_EVEN;
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->stop = args[ARG_stop].u_int;
}
// Set TX/RX pins if configured.
if (args[ARG_tx].u_obj != mp_const_none) {
int tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj);
if (!IS_VALID_TX(self->uart_id, tx)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad TX pin"));
}
self->tx = tx;
}
if (args[ARG_rx].u_obj != mp_const_none) {
int rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj);
if (!IS_VALID_RX(self->uart_id, rx)) {
mp_raise_ValueError(MP_ERROR_TEXT("bad RX pin"));
}
self->rx = rx;
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 1 || n_kw > 0 || self->baudrate == 0) {
if (self->baudrate == 0) {
self->baudrate = DEFAULT_UART_BAUDRATE;
}
uart_init(self->uart, self->baudrate);
uart_set_format(self->uart, self->bits, self->stop, self->parity);
uart_set_fifo_enabled(self->uart, true);
gpio_set_function(self->tx, GPIO_FUNC_UART);
gpio_set_function(self->rx, GPIO_FUNC_UART);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_uart_any(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(uart_is_readable(self->uart));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_any_obj, machine_uart_any);
STATIC mp_obj_t machine_uart_sendbreak(mp_obj_t self_in) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_set_break(self->uart, true);
mp_hal_delay_us(13000000 / self->baudrate + 1);
uart_set_break(self->uart, false);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_sendbreak_obj, machine_uart_sendbreak);
STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_uart_sendbreak_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table);
STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// TODO support timeout
uint8_t *dest = buf_in;
for (size_t i = 0; i < size; ++i) {
while (!uart_is_readable(self->uart)) {
MICROPY_EVENT_POLL_HOOK
}
*dest++ = uart_get_hw(self->uart)->dr;
}
return size;
}
STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// TODO support timeout
const uint8_t *src = buf_in;
for (size_t i = 0; i < size; ++i) {
while (!uart_is_writable(self->uart)) {
MICROPY_EVENT_POLL_HOOK
}
uart_get_hw(self->uart)->dr = *src++;
}
return size;
}
STATIC mp_uint_t machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && uart_is_readable(self->uart)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && uart_is_writable(self->uart)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = machine_uart_read,
.write = machine_uart_write,
.ioctl = machine_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t machine_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = machine_uart_print,
.make_new = machine_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_dict_t *)&machine_uart_locals_dict,
};

78
ports/rp2/machine_wdt.c

@ -0,0 +1,78 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "modmachine.h"
#include "hardware/watchdog.h"
typedef struct _machine_wdt_obj_t {
mp_obj_base_t base;
} machine_wdt_obj_t;
STATIC const machine_wdt_obj_t machine_wdt = {{&machine_wdt_type}};
STATIC mp_obj_t machine_wdt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_INT, {.u_int = 5000} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Verify the WDT id.
mp_int_t id = args[ARG_id].u_int;
if (id != 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("WDT(%d) doesn't exist"), id);
}
// Start the watchdog (timeout is in milliseconds).
watchdog_enable(args[ARG_timeout].u_int, false);
return MP_OBJ_FROM_PTR(&machine_wdt);
}
STATIC mp_obj_t machine_wdt_feed(mp_obj_t self_in) {
(void)self_in;
watchdog_update();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_wdt_feed_obj, machine_wdt_feed);
STATIC const mp_rom_map_elem_t machine_wdt_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_feed), MP_ROM_PTR(&machine_wdt_feed_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_wdt_locals_dict, machine_wdt_locals_dict_table);
const mp_obj_type_t machine_wdt_type = {
{ &mp_type_type },
.name = MP_QSTR_WDT,
.make_new = machine_wdt_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_wdt_locals_dict,
};

208
ports/rp2/main.c

@ -0,0 +1,208 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/compile.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/stackctrl.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/gchelper.h"
#include "lib/utils/pyexec.h"
#include "tusb.h"
#include "uart.h"
#include "modmachine.h"
#include "modrp2.h"
#include "genhdr/mpversion.h"
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/rtc.h"
#include "hardware/structs/rosc.h"
extern uint8_t __StackTop, __StackBottom;
static char gc_heap[192 * 1024];
// Embed version info in the binary in machine readable form
bi_decl(bi_program_version_string(MICROPY_GIT_TAG));
// Add a section to the picotool output similar to program features, but for frozen modules
// (it will aggregate BINARY_INFO_ID_MP_FROZEN binary info)
bi_decl(bi_program_feature_group_with_flags(BINARY_INFO_TAG_MICROPYTHON,
BINARY_INFO_ID_MP_FROZEN, "frozen modules",
BI_NAMED_GROUP_SEPARATE_COMMAS | BI_NAMED_GROUP_SORT_ALPHA));
int main(int argc, char **argv) {
#if MICROPY_HW_ENABLE_UART_REPL
bi_decl(bi_program_feature("UART REPL"))
setup_default_uart();
mp_uart_init();
#endif
#if MICROPY_HW_ENABLE_USBDEV
bi_decl(bi_program_feature("USB REPL"))
tusb_init();
#endif
#if MICROPY_PY_THREAD
bi_decl(bi_program_feature("thread support"))
mp_thread_init();
#endif
// Start and initialise the RTC
datetime_t t = {
.year = 2021,
.month = 1,
.day = 1,
.dotw = 5, // 0 is Sunday, so 5 is Friday
.hour = 0,
.min = 0,
.sec = 0,
};
rtc_init();
rtc_set_datetime(&t);
// Initialise stack extents and GC heap.
mp_stack_set_top(&__StackTop);
mp_stack_set_limit(&__StackTop - &__StackBottom - 256);
gc_init(&gc_heap[0], &gc_heap[MP_ARRAY_SIZE(gc_heap)]);
for (;;) {
// Initialise MicroPython runtime.
mp_init();
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0);
// Initialise sub-systems.
readline_init0();
machine_pin_init();
rp2_pio_init();
// Execute _boot.py to set up the filesystem.
pyexec_frozen_module("_boot.py");
// Execute user scripts.
pyexec_file_if_exists("boot.py");
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
pyexec_file_if_exists("main.py");
}
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
mp_printf(MP_PYTHON_PRINTER, "MPY: soft reboot\n");
rp2_pio_deinit();
machine_pin_deinit();
gc_sweep_all();
mp_deinit();
}
return 0;
}
void gc_collect(void) {
gc_collect_start();
gc_helper_collect_regs_and_stack();
#if MICROPY_PY_THREAD
mp_thread_gc_others();
#endif
gc_collect_end();
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(val));
for (;;) {
__breakpoint();
}
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
panic("Assertion failed");
}
#endif
uint32_t rosc_random_u32(void) {
uint32_t value = 0;
for (size_t i = 0; i < 32; ++i) {
value = value << 1 | rosc_hw->randombit;
}
return value;
}
const char rp2_help_text[] =
"Welcome to MicroPython!\n"
"\n"
"For online help please visit https://micropython.org/help/.\n"
"\n"
"For access to the hardware use the 'machine' module. RP2 specific commands\n"
"are in the 'rp2' module.\n"
"\n"
"Quick overview of some objects:\n"
" machine.Pin(pin) -- get a pin, eg machine.Pin(0)\n"
" machine.Pin(pin, m, [p]) -- get a pin and configure it for IO mode m, pull mode p\n"
" methods: init(..), value([v]), high(), low(), irq(handler)\n"
" machine.ADC(pin) -- make an analog object from a pin\n"
" methods: read_u16()\n"
" machine.PWM(pin) -- make a PWM object from a pin\n"
" methods: deinit(), freq([f]), duty_u16([d]), duty_ns([d])\n"
" machine.I2C(id) -- create an I2C object (id=0,1)\n"
" methods: readfrom(addr, buf, stop=True), writeto(addr, buf, stop=True)\n"
" readfrom_mem(addr, memaddr, arg), writeto_mem(addr, memaddr, arg)\n"
" machine.SPI(id, baudrate=1000000) -- create an SPI object (id=0,1)\n"
" methods: read(nbytes, write=0x00), write(buf), write_readinto(wr_buf, rd_buf)\n"
" machine.Timer(freq, callback) -- create a software timer object\n"
" eg: machine.Timer(freq=1, callback=lambda t:print(t))\n"
"\n"
"Pins are numbered 0-29, and 26-29 have ADC capabilities\n"
"Pin IO modes are: Pin.IN, Pin.OUT, Pin.ALT\n"
"Pin pull modes are: Pin.PULL_UP, Pin.PULL_DOWN\n"
"\n"
"Useful control commands:\n"
" CTRL-C -- interrupt a running program\n"
" CTRL-D -- on a blank line, do a soft reset of the board\n"
" CTRL-E -- on a blank line, enter paste mode\n"
"\n"
"For further help on a specific object, type help(obj)\n"
"For a list of available modules, type help('modules')\n"
;

3
ports/rp2/manifest.py

@ -0,0 +1,3 @@
freeze("modules")
freeze("$(MPY_DIR)/drivers/onewire")
include("$(MPY_DIR)/extmod/uasyncio/manifest.py")

252
ports/rp2/memmap_mp.ld

@ -0,0 +1,252 @@
/* Based on GCC ARM embedded samples.
Defines the following symbols for use by code:
__exidx_start
__exidx_end
__etext
__data_start__
__preinit_array_start
__preinit_array_end
__init_array_start
__init_array_end
__fini_array_start
__fini_array_end
__data_end__
__bss_start__
__bss_end__
__end__
end
__HeapLimit
__StackLimit
__StackTop
__stack (== StackTop)
*/
MEMORY
{
FLASH(rx) : ORIGIN = 0x10000000, LENGTH = 2048k
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 256k
SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k
SCRATCH_Y(rwx) : ORIGIN = 0x20041000, LENGTH = 4k
}
ENTRY(_entry_point)
SECTIONS
{
/* Second stage bootloader is prepended to the image. It must be 256 bytes big
and checksummed. It is usually built by the boot_stage2 target
in the Pico SDK
*/
.flash_begin : {
__flash_binary_start = .;
} > FLASH
.boot2 : {
__boot2_start__ = .;
KEEP (*(.boot2))
__boot2_end__ = .;
} > FLASH
ASSERT(__boot2_end__ - __boot2_start__ == 256,
"ERROR: Pico second stage bootloader must be 256 bytes in size")
/* The second stage will always enter the image at the start of .text.
The debugger will use the ELF entry point, which is the _entry_point
symbol if present, otherwise defaults to start of .text.
This can be used to transfer control back to the bootrom on debugger
launches only, to perform proper flash setup.
*/
.text : {
__reset_start = .;
KEEP (*(.reset))
. = ALIGN(256);
__reset_end = .;
ASSERT(__reset_end - __reset_start == 256, "ERROR: reset section should only be 256 bytes");
KEEP (*(.vectors))
/* TODO revisit this now memset/memcpy/float in ROM */
/* bit of a hack right now to exclude all floating point and time critical (e.g. memset, memcpy) code from
* FLASH ... we will include any thing excluded here in .data below by default */
*(.init)
/* Change for MicroPython... excluse gc.c, parse.c, vm.c from flash */
*(EXCLUDE_FILE(*libgcc.a: *libc.a: *lib_a-mem*.o *libm.a: *gc.c.obj *vm.c.obj *parse.c.obj) .text*)
*(.fini)
/* Pull all c'tors into .text */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* Followed by destructors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
*(.eh_frame*)
. = ALIGN(4);
} > FLASH
.rodata : {
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .rodata*)
. = ALIGN(4);
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
. = ALIGN(4);
} > FLASH
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > FLASH
__exidx_end = .;
/* Machine inspectable binary information */
. = ALIGN(4);
__binary_info_start = .;
.binary_info :
{
KEEP(*(.binary_info.keep.*))
*(.binary_info.*)
} > FLASH
__binary_info_end = .;
. = ALIGN(4);
/* End of .text-like segments */
__etext = .;
.ram_vector_table (COPY): {
*(.ram_vector_table)
} > RAM
.data : {
__data_start__ = .;
*(vtable)
*(.time_critical*)
/* remaining .text and .rodata; i.e. stuff we exclude above because we want it in RAM */
*(.text*)
. = ALIGN(4);
*(.rodata*)
. = ALIGN(4);
*(.data*)
. = ALIGN(4);
*(.after_data.*)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__mutex_array_start = .);
KEEP(*(SORT(.mutex_array.*)))
KEEP(*(.mutex_array))
PROVIDE_HIDDEN (__mutex_array_end = .);
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(SORT(.preinit_array.*)))
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
*(SORT(.fini_array.*))
*(.fini_array)
PROVIDE_HIDDEN (__fini_array_end = .);
*(.jcr)
. = ALIGN(4);
/* All data end */
__data_end__ = .;
} > RAM AT> FLASH
.uninitialized_data (COPY): {
. = ALIGN(4);
*(.uninitialized_data*)
} > RAM
/* Start and end symbols must be word-aligned */
.scratch_x : {
__scratch_x_start__ = .;
*(.scratch_x.*)
. = ALIGN(4);
__scratch_x_end__ = .;
} > SCRATCH_X AT > FLASH
__scratch_x_source__ = LOADADDR(.scratch_x);
.scratch_y : {
__scratch_y_start__ = .;
*(.scratch_y.*)
. = ALIGN(4);
__scratch_y_end__ = .;
} > SCRATCH_Y AT > FLASH
__scratch_y_source__ = LOADADDR(.scratch_y);
.bss : {
. = ALIGN(4);
__bss_start__ = .;
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
*(COMMON)
. = ALIGN(4);
__bss_end__ = .;
} > RAM
.heap (COPY):
{
__end__ = .;
end = __end__;
*(.heap*)
__HeapLimit = .;
} > RAM
/* .stack*_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later
*
* stack1 section may be empty/missing if platform_launch_core1 is not used */
/* by default we put core 0 stack at the end of scratch Y, so that if core 1
* stack is not used then all of SCRATCH_X is free.
*/
.stack1_dummy (COPY):
{
*(.stack1*)
} > SCRATCH_X
.stack_dummy (COPY):
{
*(.stack*)
} > SCRATCH_Y
.flash_end : {
__flash_binary_end = .;
} > FLASH
/* stack limit is poorly named, but historically is maximum heap ptr */
__StackLimit = ORIGIN(RAM) + LENGTH(RAM);
__StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
__StackTop = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y);
__StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
__StackBottom = __StackTop - SIZEOF(.stack_dummy);
PROVIDE(__stack = __StackTop);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
/* todo assert on extra code */
}

40
ports/rp2/micropy_extmod.cmake

@ -0,0 +1,40 @@
# CMake fragment for MicroPython extmod component
set(SOURCE_EXTMOD
${MPY_DIR}/extmod/machine_i2c.c
${MPY_DIR}/extmod/machine_mem.c
${MPY_DIR}/extmod/machine_pulse.c
${MPY_DIR}/extmod/machine_signal.c
${MPY_DIR}/extmod/machine_spi.c
${MPY_DIR}/extmod/modbtree.c
${MPY_DIR}/extmod/modframebuf.c
${MPY_DIR}/extmod/modonewire.c
${MPY_DIR}/extmod/moduasyncio.c
${MPY_DIR}/extmod/modubinascii.c
${MPY_DIR}/extmod/moducryptolib.c
${MPY_DIR}/extmod/moductypes.c
${MPY_DIR}/extmod/moduhashlib.c
${MPY_DIR}/extmod/moduheapq.c
${MPY_DIR}/extmod/modujson.c
${MPY_DIR}/extmod/modurandom.c
${MPY_DIR}/extmod/modure.c
${MPY_DIR}/extmod/moduselect.c
${MPY_DIR}/extmod/modussl_axtls.c
${MPY_DIR}/extmod/modussl_mbedtls.c
${MPY_DIR}/extmod/modutimeq.c
${MPY_DIR}/extmod/moduwebsocket.c
${MPY_DIR}/extmod/moduzlib.c
${MPY_DIR}/extmod/modwebrepl.c
${MPY_DIR}/extmod/uos_dupterm.c
${MPY_DIR}/extmod/utime_mphal.c
${MPY_DIR}/extmod/vfs.c
${MPY_DIR}/extmod/vfs_blockdev.c
${MPY_DIR}/extmod/vfs_fat.c
${MPY_DIR}/extmod/vfs_fat_diskio.c
${MPY_DIR}/extmod/vfs_fat_file.c
${MPY_DIR}/extmod/vfs_lfs.c
${MPY_DIR}/extmod/vfs_posix.c
${MPY_DIR}/extmod/vfs_posix_file.c
${MPY_DIR}/extmod/vfs_reader.c
${MPY_DIR}/extmod/virtpin.c
)

134
ports/rp2/micropy_py.cmake

@ -0,0 +1,134 @@
# CMake fragment for MicroPython core py component
set(MPY_PY_DIR "${MPY_DIR}/py")
set(MPY_PY_QSTRDEFS "${MPY_PY_DIR}/qstrdefs.h")
set(MPY_GENHDR_DIR "${CMAKE_BINARY_DIR}/genhdr")
set(MPY_MPVERSION "${MPY_GENHDR_DIR}/mpversion.h")
set(MPY_MODULEDEFS "${MPY_GENHDR_DIR}/moduledefs.h")
set(MPY_QSTR_DEFS_LAST "${MPY_GENHDR_DIR}/qstr.i.last")
set(MPY_QSTR_DEFS_SPLIT "${MPY_GENHDR_DIR}/qstr.split")
set(MPY_QSTR_DEFS_COLLECTED "${MPY_GENHDR_DIR}/qstrdefs.collected.h")
set(MPY_QSTR_DEFS_PREPROCESSED "${MPY_GENHDR_DIR}/qstrdefs.preprocessed.h")
set(MPY_QSTR_DEFS_GENERATED "${MPY_GENHDR_DIR}/qstrdefs.generated.h")
set(MPY_FROZEN_CONTENT "${CMAKE_BINARY_DIR}/frozen_content.c")
# All py/ source files
set(SOURCE_PY
${MPY_PY_DIR}/argcheck.c
${MPY_PY_DIR}/asmarm.c
${MPY_PY_DIR}/asmbase.c
${MPY_PY_DIR}/asmthumb.c
${MPY_PY_DIR}/asmx64.c
${MPY_PY_DIR}/asmx86.c
${MPY_PY_DIR}/asmxtensa.c
${MPY_PY_DIR}/bc.c
${MPY_PY_DIR}/binary.c
${MPY_PY_DIR}/builtinevex.c
${MPY_PY_DIR}/builtinhelp.c
${MPY_PY_DIR}/builtinimport.c
${MPY_PY_DIR}/compile.c
${MPY_PY_DIR}/emitbc.c
${MPY_PY_DIR}/emitcommon.c
${MPY_PY_DIR}/emitglue.c
${MPY_PY_DIR}/emitinlinethumb.c
${MPY_PY_DIR}/emitinlinextensa.c
${MPY_PY_DIR}/emitnarm.c
${MPY_PY_DIR}/emitnthumb.c
${MPY_PY_DIR}/emitnx64.c
${MPY_PY_DIR}/emitnx86.c
${MPY_PY_DIR}/emitnxtensa.c
${MPY_PY_DIR}/emitnxtensawin.c
${MPY_PY_DIR}/formatfloat.c
${MPY_PY_DIR}/frozenmod.c
${MPY_PY_DIR}/gc.c
${MPY_PY_DIR}/lexer.c
${MPY_PY_DIR}/malloc.c
${MPY_PY_DIR}/map.c
${MPY_PY_DIR}/modarray.c
${MPY_PY_DIR}/modbuiltins.c
${MPY_PY_DIR}/modcmath.c
${MPY_PY_DIR}/modcollections.c
${MPY_PY_DIR}/modgc.c
${MPY_PY_DIR}/modio.c
${MPY_PY_DIR}/modmath.c
${MPY_PY_DIR}/modmicropython.c
${MPY_PY_DIR}/modstruct.c
${MPY_PY_DIR}/modsys.c
${MPY_PY_DIR}/modthread.c
${MPY_PY_DIR}/moduerrno.c
${MPY_PY_DIR}/mpprint.c
${MPY_PY_DIR}/mpstate.c
${MPY_PY_DIR}/mpz.c
${MPY_PY_DIR}/nativeglue.c
${MPY_PY_DIR}/nlr.c
${MPY_PY_DIR}/nlrpowerpc.c
${MPY_PY_DIR}/nlrsetjmp.c
${MPY_PY_DIR}/nlrthumb.c
${MPY_PY_DIR}/nlrx64.c
${MPY_PY_DIR}/nlrx86.c
${MPY_PY_DIR}/nlrxtensa.c
${MPY_PY_DIR}/obj.c
${MPY_PY_DIR}/objarray.c
${MPY_PY_DIR}/objattrtuple.c
${MPY_PY_DIR}/objbool.c
${MPY_PY_DIR}/objboundmeth.c
${MPY_PY_DIR}/objcell.c
${MPY_PY_DIR}/objclosure.c
${MPY_PY_DIR}/objcomplex.c
${MPY_PY_DIR}/objdeque.c
${MPY_PY_DIR}/objdict.c
${MPY_PY_DIR}/objenumerate.c
${MPY_PY_DIR}/objexcept.c
${MPY_PY_DIR}/objfilter.c
${MPY_PY_DIR}/objfloat.c
${MPY_PY_DIR}/objfun.c
${MPY_PY_DIR}/objgenerator.c
${MPY_PY_DIR}/objgetitemiter.c
${MPY_PY_DIR}/objint.c
${MPY_PY_DIR}/objint_longlong.c
${MPY_PY_DIR}/objint_mpz.c
${MPY_PY_DIR}/objlist.c
${MPY_PY_DIR}/objmap.c
${MPY_PY_DIR}/objmodule.c
${MPY_PY_DIR}/objnamedtuple.c
${MPY_PY_DIR}/objnone.c
${MPY_PY_DIR}/objobject.c
${MPY_PY_DIR}/objpolyiter.c
${MPY_PY_DIR}/objproperty.c
${MPY_PY_DIR}/objrange.c
${MPY_PY_DIR}/objreversed.c
${MPY_PY_DIR}/objset.c
${MPY_PY_DIR}/objsingleton.c
${MPY_PY_DIR}/objslice.c
${MPY_PY_DIR}/objstr.c
${MPY_PY_DIR}/objstringio.c
${MPY_PY_DIR}/objstrunicode.c
${MPY_PY_DIR}/objtuple.c
${MPY_PY_DIR}/objtype.c
${MPY_PY_DIR}/objzip.c
${MPY_PY_DIR}/opmethods.c
${MPY_PY_DIR}/pairheap.c
${MPY_PY_DIR}/parse.c
${MPY_PY_DIR}/parsenum.c
${MPY_PY_DIR}/parsenumbase.c
${MPY_PY_DIR}/persistentcode.c
${MPY_PY_DIR}/profile.c
${MPY_PY_DIR}/pystack.c
${MPY_PY_DIR}/qstr.c
${MPY_PY_DIR}/reader.c
${MPY_PY_DIR}/repl.c
${MPY_PY_DIR}/ringbuf.c
${MPY_PY_DIR}/runtime.c
${MPY_PY_DIR}/runtime_utils.c
${MPY_PY_DIR}/scheduler.c
${MPY_PY_DIR}/scope.c
${MPY_PY_DIR}/sequence.c
${MPY_PY_DIR}/showbc.c
${MPY_PY_DIR}/smallint.c
${MPY_PY_DIR}/stackctrl.c
${MPY_PY_DIR}/stream.c
${MPY_PY_DIR}/unicode.c
${MPY_PY_DIR}/vm.c
${MPY_PY_DIR}/vstr.c
${MPY_PY_DIR}/warning.c
)

91
ports/rp2/micropy_rules.cmake

@ -0,0 +1,91 @@
# CMake fragment for MicroPython rules
target_sources(${MICROPYTHON_TARGET} PRIVATE
${MPY_MPVERSION}
${MPY_QSTR_DEFS_GENERATED}
${MPY_FROZEN_CONTENT}
)
# Command to force the build of another command
add_custom_command(
OUTPUT FORCE_BUILD
COMMENT ""
COMMAND echo -n
)
# Generate mpversion.h
add_custom_command(
OUTPUT ${MPY_MPVERSION}
COMMAND ${CMAKE_COMMAND} -E make_directory ${MPY_GENHDR_DIR}
COMMAND python3 ${MPY_DIR}/py/makeversionhdr.py ${MPY_MPVERSION}
DEPENDS FORCE_BUILD
)
# Generate moduledefs.h
# This is currently hard-coded to support modarray.c only, because makemoduledefs.py doesn't support absolute paths
add_custom_command(
OUTPUT ${MPY_MODULEDEFS}
COMMAND python3 ${MPY_PY_DIR}/makemoduledefs.py --vpath="." ../../../py/modarray.c > ${MPY_MODULEDEFS}
DEPENDS ${MPY_MPVERSION}
${SOURCE_QSTR}
)
# Generate qstrs
# If any of the dependencies in this rule change then the C-preprocessor step must be run.
# It only needs to be passed the list of SOURCE_QSTR files that have changed since it was
# last run, but it looks like it's not possible to specify that with cmake.
add_custom_command(
OUTPUT ${MPY_QSTR_DEFS_LAST}
COMMAND ${CMAKE_C_COMPILER} -E \$\(C_INCLUDES\) \$\(C_FLAGS\) -DNO_QSTR ${SOURCE_QSTR} > ${MPY_GENHDR_DIR}/qstr.i.last
DEPENDS ${MPY_MODULEDEFS}
${SOURCE_QSTR}
VERBATIM
)
add_custom_command(
OUTPUT ${MPY_QSTR_DEFS_SPLIT}
COMMAND python3 ${MPY_DIR}/py/makeqstrdefs.py split qstr ${MPY_GENHDR_DIR}/qstr.i.last ${MPY_GENHDR_DIR}/qstr _
COMMAND touch ${MPY_QSTR_DEFS_SPLIT}
DEPENDS ${MPY_QSTR_DEFS_LAST}
VERBATIM
)
add_custom_command(
OUTPUT ${MPY_QSTR_DEFS_COLLECTED}
COMMAND python3 ${MPY_DIR}/py/makeqstrdefs.py cat qstr _ ${MPY_GENHDR_DIR}/qstr ${MPY_QSTR_DEFS_COLLECTED}
DEPENDS ${MPY_QSTR_DEFS_SPLIT}
VERBATIM
)
add_custom_command(
OUTPUT ${MPY_QSTR_DEFS_PREPROCESSED}
COMMAND cat ${MPY_PY_QSTRDEFS} ${MPY_QSTR_DEFS} ${MPY_QSTR_DEFS_COLLECTED} | sed "s/^Q(.*)/\"&\"/" | ${CMAKE_C_COMPILER} -E \$\(C_INCLUDES\) \$\(C_FLAGS\) - | sed "s/^\\\"\\(Q(.*)\\)\\\"/\\1/" > ${MPY_QSTR_DEFS_PREPROCESSED}
DEPENDS ${MPY_PY_QSTRDEFS} ${MPY_QSTR_DEFS} ${MPY_QSTR_DEFS_COLLECTED}
VERBATIM
)
add_custom_command(
OUTPUT ${MPY_QSTR_DEFS_GENERATED}
COMMAND python3 ${MPY_PY_DIR}/makeqstrdata.py ${MPY_QSTR_DEFS_PREPROCESSED} > ${MPY_QSTR_DEFS_GENERATED}
DEPENDS ${MPY_QSTR_DEFS_PREPROCESSED}
VERBATIM
)
# Build frozen code
target_compile_options(${MICROPYTHON_TARGET} PUBLIC
-DMICROPY_QSTR_EXTRA_POOL=mp_qstr_frozen_const_pool
-DMICROPY_MODULE_FROZEN_MPY=\(1\)
)
add_custom_command(
OUTPUT ${MPY_FROZEN_CONTENT}
COMMAND python3 ${MPY_DIR}/tools/makemanifest.py -o ${MPY_FROZEN_CONTENT} -v "MPY_DIR=${MPY_DIR}" -v "PORT_DIR=${PROJECT_SOURCE_DIR}" -b "${CMAKE_BINARY_DIR}" -f${MPY_CROSS_FLAGS} ${FROZEN_MANIFEST}
DEPENDS FORCE_BUILD
${MPY_QSTR_DEFS_GENERATED}
VERBATIM
)

101
ports/rp2/modmachine.c

@ -0,0 +1,101 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_i2c.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "hardware/clocks.h"
#include "hardware/watchdog.h"
#include "pico/bootrom.h"
#define RP2_RESET_PWRON (1)
#define RP2_RESET_WDT (3)
STATIC mp_obj_t machine_reset(void) {
watchdog_reboot(0, SRAM_END, 0);
for (;;) {
__wfi();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_reset_cause(void) {
int reset_cause;
if (watchdog_caused_reboot()) {
reset_cause = RP2_RESET_WDT;
} else {
reset_cause = RP2_RESET_PWRON;
}
return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC mp_obj_t machine_bootloader(void) {
reset_usb_boot(0, 0);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader);
STATIC mp_obj_t machine_freq(void) {
return MP_OBJ_NEW_SMALL_INT(clock_get_hz(clk_sys));
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_freq_obj, machine_freq);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
{ MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_hw_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_SoftI2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&machine_pin_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&machine_pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_SoftSPI), MP_ROM_PTR(&mp_machine_soft_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&machine_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&machine_wdt_type) },
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(RP2_RESET_PWRON) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(RP2_RESET_WDT) },
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t mp_module_machine = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&machine_module_globals,
};

18
ports/rp2/modmachine.h

@ -0,0 +1,18 @@
#ifndef MICROPY_INCLUDED_RP2_MODMACHINE_H
#define MICROPY_INCLUDED_RP2_MODMACHINE_H
#include "py/obj.h"
extern const mp_obj_type_t machine_adc_type;
extern const mp_obj_type_t machine_hw_i2c_type;
extern const mp_obj_type_t machine_pin_type;
extern const mp_obj_type_t machine_pwm_type;
extern const mp_obj_type_t machine_spi_type;
extern const mp_obj_type_t machine_timer_type;
extern const mp_obj_type_t machine_uart_type;
extern const mp_obj_type_t machine_wdt_type;
void machine_pin_init(void);
void machine_pin_deinit(void);
#endif // MICROPY_INCLUDED_RP2_MODMACHINE_H

41
ports/rp2/modrp2.c

@ -0,0 +1,41 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "modrp2.h"
STATIC const mp_rom_map_elem_t rp2_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_rp2) },
{ MP_ROM_QSTR(MP_QSTR_Flash), MP_ROM_PTR(&rp2_flash_type) },
{ MP_ROM_QSTR(MP_QSTR_PIO), MP_ROM_PTR(&rp2_pio_type) },
{ MP_ROM_QSTR(MP_QSTR_StateMachine), MP_ROM_PTR(&rp2_state_machine_type) },
};
STATIC MP_DEFINE_CONST_DICT(rp2_module_globals, rp2_module_globals_table);
const mp_obj_module_t mp_module_rp2 = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&rp2_module_globals,
};

38
ports/rp2/modrp2.h

@ -0,0 +1,38 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_RP2_MODRP2_H
#define MICROPY_INCLUDED_RP2_MODRP2_H
#include "py/obj.h"
extern const mp_obj_type_t rp2_flash_type;
extern const mp_obj_type_t rp2_pio_type;
extern const mp_obj_type_t rp2_state_machine_type;
void rp2_pio_init(void);
void rp2_pio_deinit(void);
#endif // MICROPY_INCLUDED_RP2_MODRP2_H

15
ports/rp2/modules/_boot.py

@ -0,0 +1,15 @@
import os
import machine, rp2
# Try to mount the filesystem, and format the flash if it doesn't exist.
# Note: the flash requires the programming size to be aligned to 256 bytes.
bdev = rp2.Flash()
try:
vfs = os.VfsLfs2(bdev, progsize=256)
except:
os.VfsLfs2.mkfs(bdev, progsize=256)
vfs = os.VfsLfs2(bdev, progsize=256)
os.mount(vfs, "/")
del os, bdev, vfs

294
ports/rp2/modules/rp2.py

@ -0,0 +1,294 @@
# rp2 module: uses C code from _rp2, plus asm_pio decorator implemented in Python.
# MIT license; Copyright (c) 2020-2021 Damien P. George
from _rp2 import *
from micropython import const
_PROG_DATA = const(0)
_PROG_OFFSET_PIO0 = const(1)
_PROG_OFFSET_PIO1 = const(2)
_PROG_EXECCTRL = const(3)
_PROG_SHIFTCTRL = const(4)
_PROG_OUT_PINS = const(5)
_PROG_SET_PINS = const(6)
_PROG_SIDESET_PINS = const(7)
_PROG_MAX_FIELDS = const(8)
class PIOASMError(Exception):
pass
class PIOASMEmit:
def __init__(
self,
*,
out_init=None,
set_init=None,
sideset_init=None,
in_shiftdir=0,
out_shiftdir=0,
autopush=False,
autopull=False,
push_thresh=32,
pull_thresh=32
):
from array import array
self.labels = {}
execctrl = 0
shiftctrl = (
(pull_thresh & 0x1F) << 25
| (push_thresh & 0x1F) << 20
| out_shiftdir << 19
| in_shiftdir << 18
| autopull << 17
| autopush << 16
)
self.prog = [array("H"), -1, -1, execctrl, shiftctrl, out_init, set_init, sideset_init]
self.wrap_used = False
if sideset_init is None:
self.sideset_count = 0
elif isinstance(sideset_init, int):
self.sideset_count = 1
else:
self.sideset_count = len(sideset_init)
def start_pass(self, pass_):
if pass_ == 1:
if not self.wrap_used and self.num_instr:
self.wrap()
self.delay_max = 31
if self.sideset_count:
self.sideset_opt = self.num_sideset != self.num_instr
if self.sideset_opt:
self.prog[_PROG_EXECCTRL] |= 1 << 30
self.sideset_count += 1
self.delay_max >>= self.sideset_count
self.pass_ = pass_
self.num_instr = 0
self.num_sideset = 0
def __getitem__(self, key):
return self.delay(key)
def delay(self, delay):
if self.pass_ > 0:
if delay > self.delay_max:
raise PIOASMError("delay too large")
self.prog[_PROG_DATA][-1] |= delay << 8
return self
def side(self, value):
self.num_sideset += 1
if self.pass_ > 0:
set_bit = 13 - self.sideset_count
self.prog[_PROG_DATA][-1] |= self.sideset_opt << 12 | value << set_bit
return self
def wrap_target(self):
self.prog[_PROG_EXECCTRL] |= self.num_instr << 7
def wrap(self):
assert self.num_instr
self.prog[_PROG_EXECCTRL] |= (self.num_instr - 1) << 12
self.wrap_used = True
def label(self, label):
if self.pass_ == 0:
if label in self.labels:
raise PIOASMError("duplicate label {}".format(label))
self.labels[label] = self.num_instr
def word(self, instr, label=None):
self.num_instr += 1
if self.pass_ > 0:
if label is None:
label = 0
else:
if not label in self.labels:
raise PIOASMError("unknown label {}".format(label))
label = self.labels[label]
self.prog[_PROG_DATA].append(instr | label)
return self
def nop(self):
return self.word(0xA042)
def jmp(self, cond, label=None):
if label is None:
label = cond
cond = 0 # always
return self.word(0x0000 | cond << 5, label)
def wait(self, polarity, src, index):
if src == 6:
src = 1 # "pin"
elif src != 0:
src = 2 # "irq"
return self.word(0x2000 | polarity << 7 | src << 5 | index)
def in_(self, src, data):
if not 0 < data <= 32:
raise PIOASMError("invalid bit count {}".format(data))
return self.word(0x4000 | src << 5 | data & 0x1F)
def out(self, dest, data):
if dest == 8:
dest = 7 # exec
if not 0 < data <= 32:
raise PIOASMError("invalid bit count {}".format(data))
return self.word(0x6000 | dest << 5 | data & 0x1F)
def push(self, value=0, value2=0):
value |= value2
if not value & 1:
value |= 0x20 # block by default
return self.word(0x8000 | (value & 0x60))
def pull(self, value=0, value2=0):
value |= value2
if not value & 1:
value |= 0x20 # block by default
return self.word(0x8080 | (value & 0x60))
def mov(self, dest, src):
if dest == 8:
dest = 4 # exec
return self.word(0xA000 | dest << 5 | src)
def irq(self, mod, index=None):
if index is None:
index = mod
mod = 0 # no modifiers
return self.word(0xC000 | (mod & 0x60) | index)
def set(self, dest, data):
return self.word(0xE000 | dest << 5 | data)
_pio_funcs = {
# source constants for wait
"gpio": 0,
# "pin": see below, translated to 1
# "irq": see below function, translated to 2
# source/dest constants for in_, out, mov, set
"pins": 0,
"x": 1,
"y": 2,
"null": 3,
"pindirs": 4,
"pc": 5,
"status": 5,
"isr": 6,
"osr": 7,
"exec": 8, # translated to 4 for mov, 7 for out
# operation functions for mov's src
"invert": lambda x: x | 0x08,
"reverse": lambda x: x | 0x10,
# jmp condition constants
"not_x": 1,
"x_dec": 2,
"not_y": 3,
"y_dec": 4,
"x_not_y": 5,
"pin": 6,
"not_osre": 7,
# constants for push, pull
"noblock": 0x01,
"block": 0x21,
"iffull": 0x40,
"ifempty": 0x40,
# constants and modifiers for irq
# "noblock": see above
# "block": see above
"clear": 0x40,
"rel": lambda x: x | 0x10,
# functions
"wrap_target": None,
"wrap": None,
"label": None,
"word": None,
"nop": None,
"jmp": None,
"wait": None,
"in_": None,
"out": None,
"push": None,
"pull": None,
"mov": None,
"irq": None,
"set": None,
}
def asm_pio(**kw):
emit = PIOASMEmit(**kw)
def dec(f):
nonlocal emit
gl = _pio_funcs
gl["wrap_target"] = emit.wrap_target
gl["wrap"] = emit.wrap
gl["label"] = emit.label
gl["word"] = emit.word
gl["nop"] = emit.nop
gl["jmp"] = emit.jmp
gl["wait"] = emit.wait
gl["in_"] = emit.in_
gl["out"] = emit.out
gl["push"] = emit.push
gl["pull"] = emit.pull
gl["mov"] = emit.mov
gl["irq"] = emit.irq
gl["set"] = emit.set
old_gl = f.__globals__.copy()
f.__globals__.clear()
f.__globals__.update(gl)
emit.start_pass(0)
f()
emit.start_pass(1)
f()
f.__globals__.clear()
f.__globals__.update(old_gl)
return emit.prog
return dec
# sideset_count is inclusive of enable bit
def asm_pio_encode(instr, sideset_count):
emit = PIOASMEmit()
emit.delay_max = 31
emit.sideset_count = sideset_count
if emit.sideset_count:
emit.delay_max >>= emit.sideset_count
emit.pass_ = 1
emit.num_instr = 0
emit.num_sideset = 0
gl = _pio_funcs
gl["nop"] = emit.nop
# gl["jmp"] = emit.jmp currently not supported
gl["wait"] = emit.wait
gl["in_"] = emit.in_
gl["out"] = emit.out
gl["push"] = emit.push
gl["pull"] = emit.pull
gl["mov"] = emit.mov
gl["irq"] = emit.irq
gl["set"] = emit.set
exec(instr, gl)
if len(emit.prog[_PROG_DATA]) != 1:
raise PIOASMError("expecting exactly 1 instruction")
return emit.prog[_PROG_DATA][0]

103
ports/rp2/moduos.c

@ -0,0 +1,103 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/objstr.h"
#include "py/runtime.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "extmod/vfs_lfs.h"
#include "genhdr/mpversion.h"
STATIC const qstr os_uname_info_fields[] = {
MP_QSTR_sysname, MP_QSTR_nodename,
MP_QSTR_release, MP_QSTR_version, MP_QSTR_machine
};
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_sysname_obj, MICROPY_PY_SYS_PLATFORM);
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_nodename_obj, MICROPY_PY_SYS_PLATFORM);
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_release_obj, MICROPY_VERSION_STRING);
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_version_obj, MICROPY_GIT_TAG " on " MICROPY_BUILD_DATE " (" MICROPY_BUILD_TYPE ")");
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_machine_obj, MICROPY_HW_BOARD_NAME " with " MICROPY_HW_MCU_NAME);
STATIC MP_DEFINE_ATTRTUPLE(
os_uname_info_obj,
os_uname_info_fields,
5,
(mp_obj_t)&os_uname_info_sysname_obj,
(mp_obj_t)&os_uname_info_nodename_obj,
(mp_obj_t)&os_uname_info_release_obj,
(mp_obj_t)&os_uname_info_version_obj,
(mp_obj_t)&os_uname_info_machine_obj
);
STATIC mp_obj_t os_uname(void) {
return (mp_obj_t)&os_uname_info_obj;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(os_uname_obj, os_uname);
STATIC const mp_rom_map_elem_t os_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_uos) },
{ MP_ROM_QSTR(MP_QSTR_uname), MP_ROM_PTR(&os_uname_obj) },
#if MICROPY_VFS
{ MP_ROM_QSTR(MP_QSTR_chdir), MP_ROM_PTR(&mp_vfs_chdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_getcwd), MP_ROM_PTR(&mp_vfs_getcwd_obj) },
{ MP_ROM_QSTR(MP_QSTR_listdir), MP_ROM_PTR(&mp_vfs_listdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_mkdir), MP_ROM_PTR(&mp_vfs_mkdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_remove), MP_ROM_PTR(&mp_vfs_remove_obj) },
{ MP_ROM_QSTR(MP_QSTR_rename), MP_ROM_PTR(&mp_vfs_rename_obj) },
{ MP_ROM_QSTR(MP_QSTR_rmdir), MP_ROM_PTR(&mp_vfs_rmdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_stat), MP_ROM_PTR(&mp_vfs_stat_obj) },
{ MP_ROM_QSTR(MP_QSTR_statvfs), MP_ROM_PTR(&mp_vfs_statvfs_obj) },
#endif
// The following are MicroPython extensions.
#if MICROPY_PY_OS_DUPTERM
{ MP_ROM_QSTR(MP_QSTR_dupterm), MP_ROM_PTR(&mp_uos_dupterm_obj) },
#endif
#if MICROPY_VFS
{ MP_ROM_QSTR(MP_QSTR_ilistdir), MP_ROM_PTR(&mp_vfs_ilistdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_mount), MP_ROM_PTR(&mp_vfs_mount_obj) },
{ MP_ROM_QSTR(MP_QSTR_umount), MP_ROM_PTR(&mp_vfs_umount_obj) },
#if MICROPY_VFS_FAT
{ MP_ROM_QSTR(MP_QSTR_VfsFat), MP_ROM_PTR(&mp_fat_vfs_type) },
#endif
#if MICROPY_VFS_LFS1
{ MP_ROM_QSTR(MP_QSTR_VfsLfs1), MP_ROM_PTR(&mp_type_vfs_lfs1) },
#endif
#if MICROPY_VFS_LFS2
{ MP_ROM_QSTR(MP_QSTR_VfsLfs2), MP_ROM_PTR(&mp_type_vfs_lfs2) },
#endif
#endif
};
STATIC MP_DEFINE_CONST_DICT(os_module_globals, os_module_globals_table);
const mp_obj_module_t mp_module_uos = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&os_module_globals,
};

127
ports/rp2/modutime.c

@ -0,0 +1,127 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "lib/timeutils/timeutils.h"
#include "extmod/utime_mphal.h"
#include "hardware/rtc.h"
// localtime([secs])
// Convert a time expressed in seconds since the Epoch into an 8-tuple which
// contains: (year, month, mday, hour, minute, second, weekday, yearday)
// If secs is not provided or None, then the current time from is used.
STATIC mp_obj_t time_localtime(size_t n_args, const mp_obj_t *args) {
if (n_args == 0 || args[0] == mp_const_none) {
// Get current date and time.
datetime_t t;
rtc_get_datetime(&t);
mp_obj_t tuple[8] = {
mp_obj_new_int(t.year),
mp_obj_new_int(t.month),
mp_obj_new_int(t.day),
mp_obj_new_int(t.hour),
mp_obj_new_int(t.min),
mp_obj_new_int(t.sec),
mp_obj_new_int((t.dotw + 6) % 7), // convert 0=Sunday to 6=Sunday
mp_obj_new_int(timeutils_year_day(t.year, t.month, t.day)),
};
return mp_obj_new_tuple(8, tuple);
} else {
// Convert given seconds to tuple.
mp_int_t seconds = mp_obj_get_int(args[0]);
timeutils_struct_time_t tm;
timeutils_seconds_since_epoch_to_struct_time(seconds, &tm);
mp_obj_t tuple[8] = {
tuple[0] = mp_obj_new_int(tm.tm_year),
tuple[1] = mp_obj_new_int(tm.tm_mon),
tuple[2] = mp_obj_new_int(tm.tm_mday),
tuple[3] = mp_obj_new_int(tm.tm_hour),
tuple[4] = mp_obj_new_int(tm.tm_min),
tuple[5] = mp_obj_new_int(tm.tm_sec),
tuple[6] = mp_obj_new_int(tm.tm_wday),
tuple[7] = mp_obj_new_int(tm.tm_yday),
};
return mp_obj_new_tuple(8, tuple);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(time_localtime_obj, 0, 1, time_localtime);
// mktime()
// This is inverse function of localtime. It's argument is a full 8-tuple
// which expresses a time as per localtime. It returns an integer which is
// the number of seconds since the Epoch.
STATIC mp_obj_t time_mktime(mp_obj_t tuple) {
size_t len;
mp_obj_t *elem;
mp_obj_get_array(tuple, &len, &elem);
// localtime generates a tuple of len 8. CPython uses 9, so we accept both.
if (len < 8 || len > 9) {
mp_raise_TypeError(MP_ERROR_TEXT("mktime needs a tuple of length 8 or 9"));
}
return mp_obj_new_int_from_uint(timeutils_mktime(mp_obj_get_int(elem[0]),
mp_obj_get_int(elem[1]), mp_obj_get_int(elem[2]), mp_obj_get_int(elem[3]),
mp_obj_get_int(elem[4]), mp_obj_get_int(elem[5])));
}
MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime);
// time()
// Return the number of seconds since the Epoch.
STATIC mp_obj_t time_time(void) {
datetime_t t;
rtc_get_datetime(&t);
return mp_obj_new_int_from_ull(timeutils_seconds_since_epoch(t.year, t.month, t.day, t.hour, t.min, t.sec));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time);
STATIC const mp_rom_map_elem_t mp_module_time_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utime) },
{ MP_ROM_QSTR(MP_QSTR_gmtime), MP_ROM_PTR(&time_localtime_obj) },
{ MP_ROM_QSTR(MP_QSTR_localtime), MP_ROM_PTR(&time_localtime_obj) },
{ MP_ROM_QSTR(MP_QSTR_mktime), MP_ROM_PTR(&time_mktime_obj) },
{ MP_ROM_QSTR(MP_QSTR_time), MP_ROM_PTR(&time_time_obj) },
{ MP_ROM_QSTR(MP_QSTR_time_ns), MP_ROM_PTR(&mp_utime_time_ns_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&mp_utime_sleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep_ms), MP_ROM_PTR(&mp_utime_sleep_ms_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep_us), MP_ROM_PTR(&mp_utime_sleep_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_ms), MP_ROM_PTR(&mp_utime_ticks_ms_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_us), MP_ROM_PTR(&mp_utime_ticks_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_cpu), MP_ROM_PTR(&mp_utime_ticks_cpu_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_add), MP_ROM_PTR(&mp_utime_ticks_add_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_diff), MP_ROM_PTR(&mp_utime_ticks_diff_obj) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_time_globals, mp_module_time_globals_table);
const mp_obj_module_t mp_module_utime = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_time_globals,
};

196
ports/rp2/mpconfigport.h

@ -0,0 +1,196 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Options controlling how MicroPython is built, overriding defaults in py/mpconfig.h
#include <stdint.h>
#include "hardware/spi.h"
#include "hardware/sync.h"
#include "pico/binary_info.h"
// Board and hardware specific configuration
#define MICROPY_HW_BOARD_NAME "Raspberry Pi Pico"
#define MICROPY_HW_MCU_NAME "RP2040"
#define MICROPY_HW_ENABLE_UART_REPL (0) // useful if there is no USB
#define MICROPY_HW_ENABLE_USBDEV (1)
// Memory allocation policies
#define MICROPY_GC_STACK_ENTRY_TYPE uint16_t
#define MICROPY_ALLOC_PATH_MAX (128)
#define MICROPY_QSTR_BYTES_IN_HASH (1)
// MicroPython emitters
#define MICROPY_PERSISTENT_CODE_LOAD (1)
#define MICROPY_EMIT_THUMB (1)
#define MICROPY_EMIT_THUMB_ARMV7M (0)
#define MICROPY_EMIT_INLINE_THUMB (1)
#define MICROPY_EMIT_INLINE_THUMB_FLOAT (0)
#define MICROPY_EMIT_INLINE_THUMB_ARMV7M (0)
// Python internal features
#define MICROPY_READER_VFS (1)
#define MICROPY_ENABLE_GC (1)
#define MICROPY_ENABLE_FINALISER (1)
#define MICROPY_STACK_CHECK (1)
#define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1)
#define MICROPY_KBD_EXCEPTION (1)
#define MICROPY_HELPER_REPL (1)
#define MICROPY_REPL_AUTO_INDENT (1)
#define MICROPY_LONGINT_IMPL (MICROPY_LONGINT_IMPL_MPZ)
#define MICROPY_ENABLE_SOURCE_LINE (1)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_FLOAT)
#define MICROPY_MODULE_BUILTIN_INIT (1)
#define MICROPY_MODULE_WEAK_LINKS (1)
#define MICROPY_CAN_OVERRIDE_BUILTINS (1)
#define MICROPY_ENABLE_SCHEDULER (1)
#define MICROPY_SCHEDULER_DEPTH (8)
// Fine control over Python builtins, classes, modules, etc
#define MICROPY_PY_FUNCTION_ATTRS (1)
#define MICROPY_PY_BUILTINS_STR_UNICODE (1)
#define MICROPY_PY_BUILTINS_MEMORYVIEW (1)
#define MICROPY_PY_BUILTINS_ROUND_INT (1)
#define MICROPY_PY_ALL_SPECIAL_METHODS (1)
#define MICROPY_PY_BUILTINS_INPUT (1)
#define MICROPY_PY_BUILTINS_HELP (1)
#define MICROPY_PY_BUILTINS_HELP_TEXT rp2_help_text
#define MICROPY_PY_BUILTINS_HELP_MODULES (1)
#define MICROPY_PY_ARRAY_SLICE_ASSIGN (1)
#define MICROPY_PY___FILE__ (0)
#define MICROPY_PY_MICROPYTHON_MEM_INFO (1)
#define MICROPY_PY_IO_IOBASE (1)
#define MICROPY_PY_IO_FILEIO (1)
#define MICROPY_PY_SYS_MAXSIZE (1)
#define MICROPY_PY_SYS_STDFILES (1)
#define MICROPY_PY_SYS_STDIO_BUFFER (1)
#define MICROPY_PY_SYS_PLATFORM "rp2"
#define MICROPY_PY_THREAD (1)
#define MICROPY_PY_THREAD_GIL (0)
// Extended modules
#define MICROPY_EPOCH_IS_1970 (1)
#define MICROPY_PY_UASYNCIO (1)
#define MICROPY_PY_UCTYPES (1)
#define MICROPY_PY_UZLIB (1)
#define MICROPY_PY_UJSON (1)
#define MICROPY_PY_URE (1)
#define MICROPY_PY_URE_MATCH_GROUPS (1)
#define MICROPY_PY_URE_MATCH_SPAN_START_END (1)
#define MICROPY_PY_URE_SUB (1)
#define MICROPY_PY_UHASHLIB (1)
#define MICROPY_PY_UBINASCII (1)
#define MICROPY_PY_UTIME_MP_HAL (1)
#define MICROPY_PY_URANDOM (1)
#define MICROPY_PY_URANDOM_EXTRA_FUNCS (1)
#define MICROPY_PY_URANDOM_SEED_INIT_FUNC (rosc_random_u32())
#define MICROPY_PY_USELECT (1)
#define MICROPY_PY_MACHINE (1)
#define MICROPY_PY_MACHINE_PIN_MAKE_NEW mp_pin_make_new
#define MICROPY_PY_MACHINE_I2C (1)
#define MICROPY_PY_MACHINE_SPI (1)
#define MICROPY_PY_MACHINE_SPI_MSB (SPI_MSB_FIRST)
#define MICROPY_PY_MACHINE_SPI_LSB (SPI_LSB_FIRST)
#define MICROPY_PY_FRAMEBUF (1)
#define MICROPY_VFS (1)
#define MICROPY_VFS_LFS2 (1)
// Use VfsLfs2's types for fileio/textio
#define mp_type_fileio mp_type_vfs_lfs2_fileio
#define mp_type_textio mp_type_vfs_lfs2_textio
// Use VFS's functions for import stat and builtin open
#define mp_import_stat mp_vfs_import_stat
#define mp_builtin_open_obj mp_vfs_open_obj
// Hooks to add builtins
#define MICROPY_PORT_BUILTINS \
{ MP_ROM_QSTR(MP_QSTR_open), MP_ROM_PTR(&mp_builtin_open_obj) },
extern const struct _mp_obj_module_t mp_module_machine;
extern const struct _mp_obj_module_t mp_module_onewire;
extern const struct _mp_obj_module_t mp_module_rp2;
extern const struct _mp_obj_module_t mp_module_uos;
extern const struct _mp_obj_module_t mp_module_utime;
#define MICROPY_PORT_BUILTIN_MODULES \
{ MP_OBJ_NEW_QSTR(MP_QSTR_machine), (mp_obj_t)&mp_module_machine }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR__onewire), (mp_obj_t)&mp_module_onewire }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR__rp2), (mp_obj_t)&mp_module_rp2 }, \
{ MP_ROM_QSTR(MP_QSTR_uos), MP_ROM_PTR(&mp_module_uos) }, \
{ MP_ROM_QSTR(MP_QSTR_utime), MP_ROM_PTR(&mp_module_utime) }, \
#define MICROPY_PORT_ROOT_POINTERS \
const char *readline_hist[8]; \
void *machine_pin_irq_obj[30]; \
void *rp2_pio_irq_obj[2]; \
void *rp2_state_machine_irq_obj[8]; \
#define MP_STATE_PORT MP_STATE_VM
// Miscellaneous settings
// TODO need to look and see if these could/should be spinlock/mutex
#define MICROPY_BEGIN_ATOMIC_SECTION() save_and_disable_interrupts()
#define MICROPY_END_ATOMIC_SECTION(state) restore_interrupts(state)
#if MICROPY_HW_ENABLE_USBDEV
#define MICROPY_HW_USBDEV_TASK_HOOK extern void tud_task(void); tud_task();
#define MICROPY_VM_HOOK_COUNT (10)
#define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
#define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
vm_hook_divisor = MICROPY_VM_HOOK_COUNT; \
MICROPY_HW_USBDEV_TASK_HOOK \
}
#define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
#define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
#else
#define MICROPY_HW_USBDEV_TASK_HOOK
#endif
#define MICROPY_EVENT_POLL_HOOK \
do { \
extern void mp_handle_pending(bool); \
mp_handle_pending(true); \
best_effort_wfe_or_timeout(make_timeout_time_ms(1)); \
MICROPY_HW_USBDEV_TASK_HOOK \
} while (0);
#define MICROPY_MAKE_POINTER_CALLABLE(p) ((void *)((mp_uint_t)(p) | 1))
#define MP_SSIZE_MAX (0x7fffffff)
typedef intptr_t mp_int_t; // must be pointer size
typedef uintptr_t mp_uint_t; // must be pointer size
typedef intptr_t mp_off_t;
// We need to provide a declaration/definition of alloca()
#include <alloca.h>
#define BINARY_INFO_TAG_MICROPYTHON BINARY_INFO_MAKE_TAG('M', 'P')
#define BINARY_INFO_ID_MP_FROZEN 0x4a99d719
#define MICROPY_FROZEN_LIST_ITEM(name, file) bi_decl(bi_string(BINARY_INFO_TAG_MICROPYTHON, BINARY_INFO_ID_MP_FROZEN, name))
extern uint32_t rosc_random_u32(void);

142
ports/rp2/mphalport.c

@ -0,0 +1,142 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "lib/timeutils/timeutils.h"
#include "tusb.h"
#include "uart.h"
#include "hardware/rtc.h"
#if MICROPY_HW_ENABLE_UART_REPL
#ifndef UART_BUFFER_LEN
// reasonably big so we can paste
#define UART_BUFFER_LEN 256
#endif
STATIC uint8_t stdin_ringbuf_array[UART_BUFFER_LEN];
ringbuf_t stdin_ringbuf = { stdin_ringbuf_array, sizeof(stdin_ringbuf_array) };
#endif
#if MICROPY_KBD_EXCEPTION
int mp_interrupt_char = -1;
void tud_cdc_rx_wanted_cb(uint8_t itf, char wanted_char) {
(void)itf;
(void)wanted_char;
tud_cdc_read_char(); // discard interrupt char
mp_keyboard_interrupt();
}
void mp_hal_set_interrupt_char(int c) {
mp_interrupt_char = c;
tud_cdc_set_wanted_char(c);
}
#endif
uintptr_t mp_hal_stdio_poll(uintptr_t poll_flags) {
uintptr_t ret = 0;
#if MICROPY_HW_ENABLE_UART_REPL
if ((poll_flags & MP_STREAM_POLL_RD) && ringbuf_peek(&stdin_ringbuf) != -1) {
ret |= MP_STREAM_POLL_RD;
}
#endif
#if MICROPY_HW_ENABLE_USBDEV
if (tud_cdc_connected() && tud_cdc_available()) {
ret |= MP_STREAM_POLL_RD;
}
#endif
return ret;
}
// Receive single character
int mp_hal_stdin_rx_chr(void) {
for (;;) {
#if MICROPY_HW_ENABLE_UART_REPL
int c = ringbuf_get(&stdin_ringbuf);
if (c != -1) {
return c;
}
#endif
#if MICROPY_HW_ENABLE_USBDEV
if (tud_cdc_connected() && tud_cdc_available()) {
uint8_t buf[1];
uint32_t count = tud_cdc_read(buf, sizeof(buf));
if (count) {
return buf[0];
}
}
#endif
MICROPY_EVENT_POLL_HOOK
}
}
// Send string of given length
void mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) {
#if MICROPY_HW_ENABLE_UART_REPL
mp_uart_write_strn(str, len);
#endif
#if MICROPY_HW_ENABLE_USBDEV
if (tud_cdc_connected()) {
for (size_t i = 0; i < len;) {
uint32_t n = len - i;
if (n > CFG_TUD_CDC_EP_BUFSIZE) {
n = CFG_TUD_CDC_EP_BUFSIZE;
}
while (n > tud_cdc_write_available()) {
tud_task();
tud_cdc_write_flush();
}
uint32_t n2 = tud_cdc_write(str + i, n);
tud_task();
tud_cdc_write_flush();
i += n2;
}
}
#endif
}
void mp_hal_delay_ms(mp_uint_t ms) {
absolute_time_t t = make_timeout_time_ms(ms);
while (!time_reached(t)) {
mp_handle_pending(true);
best_effort_wfe_or_timeout(t);
MICROPY_HW_USBDEV_TASK_HOOK
}
}
uint64_t mp_hal_time_ns(void) {
datetime_t t;
rtc_get_datetime(&t);
uint64_t s = timeutils_seconds_since_epoch(t.year, t.month, t.day, t.hour, t.min, t.sec);
return s * 1000000000ULL;
}

113
ports/rp2/mphalport.h

@ -0,0 +1,113 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef MICROPY_INCLUDED_RP2_MPHALPORT_H
#define MICROPY_INCLUDED_RP2_MPHALPORT_H
#include "py/mpconfig.h"
#include "py/ringbuf.h"
#include "pico/time.h"
extern int mp_interrupt_char;
extern ringbuf_t stdin_ringbuf;
void mp_hal_set_interrupt_char(int c);
static inline void mp_hal_delay_us(mp_uint_t us) {
sleep_us(us);
}
static inline void mp_hal_delay_us_fast(mp_uint_t us) {
busy_wait_us(us);
}
#define mp_hal_quiet_timing_enter() MICROPY_BEGIN_ATOMIC_SECTION()
#define mp_hal_quiet_timing_exit(irq_state) MICROPY_END_ATOMIC_SECTION(irq_state)
static inline mp_uint_t mp_hal_ticks_us(void) {
return time_us_32();
}
static inline mp_uint_t mp_hal_ticks_ms(void) {
return to_ms_since_boot(get_absolute_time());
}
static inline mp_uint_t mp_hal_ticks_cpu(void) {
// ticks_cpu() is defined as using the highest-resolution timing source
// in the system. This is usually a CPU clock, but doesn't have to be.
return time_us_32();
}
// C-level pin HAL
#include "py/obj.h"
#include "hardware/gpio.h"
#define MP_HAL_PIN_FMT "%u"
#define mp_hal_pin_obj_t uint
extern uint32_t machine_pin_open_drain_mask;
mp_hal_pin_obj_t mp_hal_get_pin_obj(mp_obj_t pin_in);
static inline unsigned int mp_hal_pin_name(mp_hal_pin_obj_t pin) {
return pin;
}
static inline void mp_hal_pin_input(mp_hal_pin_obj_t pin) {
gpio_set_function(pin, GPIO_FUNC_SIO);
gpio_set_dir(pin, GPIO_IN);
machine_pin_open_drain_mask &= ~(1 << pin);
}
static inline void mp_hal_pin_output(mp_hal_pin_obj_t pin) {
gpio_set_function(pin, GPIO_FUNC_SIO);
gpio_set_dir(pin, GPIO_OUT);
machine_pin_open_drain_mask &= ~(1 << pin);
}
static inline void mp_hal_pin_open_drain(mp_hal_pin_obj_t pin) {
gpio_set_function(pin, GPIO_FUNC_SIO);
gpio_set_dir(pin, GPIO_IN);
gpio_put(pin, 0);
machine_pin_open_drain_mask |= 1 << pin;
}
static inline int mp_hal_pin_read(mp_hal_pin_obj_t pin) {
return gpio_get(pin);
}
static inline void mp_hal_pin_write(mp_hal_pin_obj_t pin, int v) {
gpio_put(pin, v);
}
static inline void mp_hal_pin_od_low(mp_hal_pin_obj_t pin) {
gpio_set_dir(pin, GPIO_OUT);
}
static inline void mp_hal_pin_od_high(mp_hal_pin_obj_t pin) {
gpio_set_dir(pin, GPIO_IN);
}
#endif // MICROPY_INCLUDED_RP2_MPHALPORT_H

105
ports/rp2/mpthreadport.c

@ -0,0 +1,105 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mpthread.h"
#include "pico/stdlib.h"
#include "pico/multicore.h"
#if MICROPY_PY_THREAD
extern uint8_t __StackTop, __StackBottom;
void *core_state[2];
STATIC void *(*core1_entry)(void *) = NULL;
STATIC void *core1_arg = NULL;
STATIC uint32_t *core1_stack = NULL;
STATIC size_t core1_stack_num_words = 0;
void mp_thread_init(void) {
mp_thread_set_state(&mp_state_ctx.thread);
core1_entry = NULL;
}
void mp_thread_gc_others(void) {
if (get_core_num() == 0) {
// GC running on core0, trace core1's stack, if it's running.
if (core1_entry != NULL) {
gc_collect_root((void **)core1_stack, core1_stack_num_words);
}
} else {
// GC running on core1, trace core0's stack.
gc_collect_root((void **)&__StackBottom, (&__StackTop - &__StackBottom) / sizeof(uintptr_t));
}
}
STATIC void core1_entry_wrapper(void) {
if (core1_entry) {
core1_entry(core1_arg);
}
core1_entry = NULL;
// returning from here will loop the core forever (WFI)
}
void mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
// Check if core1 is already in use.
if (core1_entry != NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("core1 in use"));
}
core1_entry = entry;
core1_arg = arg;
if (*stack_size == 0) {
*stack_size = 4096; // default stack size
} else if (*stack_size < 2048) {
*stack_size = 2048; // minimum stack size
}
// Round stack size to a multiple of the word size.
core1_stack_num_words = *stack_size / sizeof(uint32_t);
*stack_size = core1_stack_num_words * sizeof(uint32_t);
// Allocate stack.
core1_stack = m_new(uint32_t, core1_stack_num_words);
// Create thread on core1.
multicore_reset_core1();
multicore_launch_core1_with_stack(core1_entry_wrapper, core1_stack, *stack_size);
// Adjust stack_size to provide room to recover from hitting the limit.
*stack_size -= 512;
}
void mp_thread_start(void) {
}
void mp_thread_finish(void) {
}
#endif // MICROPY_PY_THREAD

64
ports/rp2/mpthreadport.h

@ -0,0 +1,64 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_RP2_MPTHREADPORT_H
#define MICROPY_INCLUDED_RP2_MPTHREADPORT_H
#include "py/mpthread.h"
#include "pico/mutex.h"
typedef struct mutex mp_thread_mutex_t;
extern void *core_state[2];
void mp_thread_init(void);
void mp_thread_gc_others(void);
static inline void mp_thread_set_state(struct _mp_state_thread_t *state) {
core_state[get_core_num()] = state;
}
static inline struct _mp_state_thread_t *mp_thread_get_state(void) {
return core_state[get_core_num()];
}
static inline void mp_thread_mutex_init(mp_thread_mutex_t *m) {
mutex_init(m);
}
static inline int mp_thread_mutex_lock(mp_thread_mutex_t *m, int wait) {
if (wait) {
mutex_enter_blocking(m);
return 1;
} else {
return mutex_try_enter(m, NULL);
}
}
static inline void mp_thread_mutex_unlock(mp_thread_mutex_t *m) {
mutex_exit(m);
}
#endif // MICROPY_INCLUDED_RP2_MPTHREADPORT_H

3
ports/rp2/qstrdefsport.h

@ -0,0 +1,3 @@
// qstrs specific to this port
// *FORMAT-OFF*
Q(/lib)

146
ports/rp2/rp2_flash.c

@ -0,0 +1,146 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "extmod/vfs.h"
#include "modrp2.h"
#include "hardware/flash.h"
#include "pico/binary_info.h"
#define BLOCK_SIZE_BYTES (FLASH_SECTOR_SIZE)
#ifndef MICROPY_HW_FLASH_STORAGE_BYTES
#define MICROPY_HW_FLASH_STORAGE_BYTES (1408 * 1024)
#endif
#ifndef MICROPY_HW_FLASH_STORAGE_BASE
#define MICROPY_HW_FLASH_STORAGE_BASE (PICO_FLASH_SIZE_BYTES - MICROPY_HW_FLASH_STORAGE_BYTES)
#endif
static_assert(MICROPY_HW_FLASH_STORAGE_BASE + MICROPY_HW_FLASH_STORAGE_BYTES <= PICO_FLASH_SIZE_BYTES, "MICROPY_HW_FLASH_STORAGE_BYTES too big");
typedef struct _rp2_flash_obj_t {
mp_obj_base_t base;
uint32_t flash_base;
uint32_t flash_size;
} rp2_flash_obj_t;
STATIC rp2_flash_obj_t rp2_flash_obj = {
.base = { &rp2_flash_type },
.flash_base = MICROPY_HW_FLASH_STORAGE_BASE,
.flash_size = MICROPY_HW_FLASH_STORAGE_BYTES,
};
// Tag the flash drive in the binary as readable/writable (but not reformatable)
bi_decl(bi_block_device(
BINARY_INFO_TAG_MICROPYTHON,
"MicroPython",
XIP_BASE + MICROPY_HW_FLASH_STORAGE_BASE,
MICROPY_HW_FLASH_STORAGE_BYTES,
NULL,
BINARY_INFO_BLOCK_DEV_FLAG_READ |
BINARY_INFO_BLOCK_DEV_FLAG_WRITE |
BINARY_INFO_BLOCK_DEV_FLAG_PT_UNKNOWN));
STATIC mp_obj_t rp2_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check args.
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// Return singleton object.
return MP_OBJ_FROM_PTR(&rp2_flash_obj);
}
STATIC mp_obj_t rp2_flash_readblocks(size_t n_args, const mp_obj_t *args) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
if (n_args == 4) {
offset += mp_obj_get_int(args[3]);
}
memcpy(bufinfo.buf, (void *)(XIP_BASE + self->flash_base + offset), bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_readblocks_obj, 3, 4, rp2_flash_readblocks);
STATIC mp_obj_t rp2_flash_writeblocks(size_t n_args, const mp_obj_t *args) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
if (n_args == 3) {
flash_range_erase(self->flash_base + offset, bufinfo.len);
// TODO check return value
} else {
offset += mp_obj_get_int(args[3]);
}
flash_range_program(self->flash_base + offset, bufinfo.buf, bufinfo.len);
// TODO check return value
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_writeblocks_obj, 3, 4, rp2_flash_writeblocks);
STATIC mp_obj_t rp2_flash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) {
rp2_flash_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_DEINIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_SYNC:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT:
return MP_OBJ_NEW_SMALL_INT(self->flash_size / BLOCK_SIZE_BYTES);
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE:
return MP_OBJ_NEW_SMALL_INT(BLOCK_SIZE_BYTES);
case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: {
uint32_t offset = mp_obj_get_int(arg_in) * BLOCK_SIZE_BYTES;
flash_range_erase(self->flash_base + offset, BLOCK_SIZE_BYTES);
// TODO check return value
return MP_OBJ_NEW_SMALL_INT(0);
}
default:
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(rp2_flash_ioctl_obj, rp2_flash_ioctl);
STATIC const mp_rom_map_elem_t rp2_flash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&rp2_flash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&rp2_flash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&rp2_flash_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rp2_flash_locals_dict, rp2_flash_locals_dict_table);
const mp_obj_type_t rp2_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_Flash,
.make_new = rp2_flash_make_new,
.locals_dict = (mp_obj_dict_t *)&rp2_flash_locals_dict,
};

780
ports/rp2/rp2_pio.c

@ -0,0 +1,780 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/binary.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "lib/utils/mpirq.h"
#include "modrp2.h"
#include "hardware/clocks.h"
#include "hardware/irq.h"
#include "hardware/pio.h"
#define PIO_NUM(pio) ((pio) == pio0 ? 0 : 1)
typedef struct _rp2_pio_obj_t {
mp_obj_base_t base;
PIO pio;
uint8_t irq;
} rp2_pio_obj_t;
typedef struct _rp2_pio_irq_obj_t {
mp_irq_obj_t base;
uint32_t flags;
uint32_t trigger;
} rp2_pio_irq_obj_t;
typedef struct _rp2_state_machine_obj_t {
mp_obj_base_t base;
PIO pio;
uint8_t irq;
uint8_t sm; // 0-3
uint8_t id; // 0-7
} rp2_state_machine_obj_t;
typedef struct _rp2_state_machine_irq_obj_t {
mp_irq_obj_t base;
uint8_t flags;
uint8_t trigger;
} rp2_state_machine_irq_obj_t;
STATIC const rp2_state_machine_obj_t rp2_state_machine_obj[8];
STATIC mp_obj_t rp2_state_machine_init_helper(const rp2_state_machine_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void pio_irq0(PIO pio) {
uint32_t ints = pio->ints0;
// Acknowledge SM0-3 IRQs if they are enabled on this IRQ0.
pio->irq = ints >> 8;
// Call handler if it is registered, for PIO irqs.
rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(pio)]);
if (irq != NULL && (ints & irq->trigger)) {
irq->flags = ints & irq->trigger;
mp_irq_handler(&irq->base);
}
// Call handler if it is registered, for StateMachine irqs.
for (size_t i = 0; i < 4; ++i) {
rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(pio) * 4 + i]);
if (irq != NULL && ((ints >> (8 + i)) & irq->trigger)) {
irq->flags = 1;
mp_irq_handler(&irq->base);
}
}
}
STATIC void pio0_irq0(void) {
pio_irq0(pio0);
}
STATIC void pio1_irq0(void) {
pio_irq0(pio1);
}
void rp2_pio_init(void) {
// Reset all PIO instruction memory.
pio_clear_instruction_memory(pio0);
pio_clear_instruction_memory(pio1);
// Set up interrupts.
memset(MP_STATE_PORT(rp2_pio_irq_obj), 0, sizeof(MP_STATE_PORT(rp2_pio_irq_obj)));
memset(MP_STATE_PORT(rp2_state_machine_irq_obj), 0, sizeof(MP_STATE_PORT(rp2_state_machine_irq_obj)));
irq_set_exclusive_handler(PIO0_IRQ_0, pio0_irq0);
irq_set_exclusive_handler(PIO1_IRQ_0, pio1_irq0);
}
void rp2_pio_deinit(void) {
// Disable and clear interrupts.
irq_set_mask_enabled((1u << PIO0_IRQ_0) | (1u << PIO0_IRQ_1), false);
irq_remove_handler(PIO0_IRQ_0, pio0_irq0);
irq_remove_handler(PIO1_IRQ_0, pio1_irq0);
}
/******************************************************************************/
// Helper functions to manage asm_pio data structure.
#define ASM_PIO_CONFIG_DEFAULT { -1, 0, 0, 0 };
enum {
PROG_DATA,
PROG_OFFSET_PIO0,
PROG_OFFSET_PIO1,
PROG_EXECCTRL,
PROG_SHIFTCTRL,
PROG_OUT_PINS,
PROG_SET_PINS,
PROG_SIDESET_PINS,
PROG_MAX_FIELDS,
};
typedef struct _asm_pio_config_t {
int8_t base;
uint8_t count;
uint8_t pindirs;
uint8_t pinvals;
} asm_pio_config_t;
STATIC void asm_pio_override_shiftctrl(mp_obj_t arg, uint32_t bits, uint32_t lsb, pio_sm_config *config) {
if (arg != mp_const_none) {
config->shiftctrl = (config->shiftctrl & ~bits) | (mp_obj_get_int(arg) << lsb);
}
}
STATIC void asm_pio_get_pins(const char *type, mp_obj_t prog_pins, mp_obj_t arg_base, asm_pio_config_t *config) {
if (prog_pins != mp_const_none) {
// The PIO program specified pins for initialisation on out/set/sideset.
if (mp_obj_is_integer(prog_pins)) {
// A single pin specified, set its dir and value.
config->count = 1;
mp_int_t value = mp_obj_get_int(prog_pins);
config->pindirs = value >> 1;
config->pinvals = value & 1;
} else {
// An array of pins specified, set their dirs and values.
size_t count;
mp_obj_t *items;
mp_obj_get_array(prog_pins, &count, &items);
config->count = count;
for (size_t i = 0; i < config->count; ++i) {
mp_int_t value = mp_obj_get_int(items[i]);
config->pindirs |= (value >> 1) << i;
config->pinvals |= (value & 1) << i;
}
}
}
if (arg_base != mp_const_none) {
// The instantiation of the PIO program specified a base pin.
config->base = mp_hal_get_pin_obj(arg_base);
}
}
STATIC void asm_pio_init_gpio(PIO pio, uint32_t sm, asm_pio_config_t *config) {
uint32_t pinmask = ((1 << config->count) - 1) << config->base;
pio_sm_set_pins_with_mask(pio, sm, config->pinvals << config->base, pinmask);
pio_sm_set_pindirs_with_mask(pio, sm, config->pindirs << config->base, pinmask);
for (size_t i = 0; i < config->count; ++i) {
gpio_set_function(config->base + i, pio == pio0 ? GPIO_FUNC_PIO0 : GPIO_FUNC_PIO1);
}
}
/******************************************************************************/
// PIO object
STATIC const mp_irq_methods_t rp2_pio_irq_methods;
STATIC rp2_pio_obj_t rp2_pio_obj[] = {
{ { &rp2_pio_type }, pio0, PIO0_IRQ_0 },
{ { &rp2_pio_type }, pio1, PIO1_IRQ_0 },
};
STATIC void rp2_pio_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PIO(%u)", self->pio == pio0 ? 0 : 1);
}
// constructor(id)
STATIC mp_obj_t rp2_pio_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// Get the PIO object.
int pio_id = mp_obj_get_int(args[0]);
if (!(0 <= pio_id && pio_id < MP_ARRAY_SIZE(rp2_pio_obj))) {
mp_raise_ValueError("invalid PIO");
}
const rp2_pio_obj_t *self = &rp2_pio_obj[pio_id];
// Return the PIO object.
return MP_OBJ_FROM_PTR(self);
}
// PIO.add_program(prog)
STATIC mp_obj_t rp2_pio_add_program(mp_obj_t self_in, mp_obj_t prog_in) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Get the program data.
mp_obj_t *prog;
mp_obj_get_array_fixed_n(prog_in, PROG_MAX_FIELDS, &prog);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(prog[PROG_DATA], &bufinfo, MP_BUFFER_READ);
// Add the program data to the PIO instruction memory.
struct pio_program pio_program = { bufinfo.buf, bufinfo.len / 2, -1 };
if (!pio_can_add_program(self->pio, &pio_program)) {
mp_raise_OSError(MP_ENOMEM);
}
uint offset = pio_add_program(self->pio, &pio_program);
// Store the program offset in the program object.
prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)] = MP_OBJ_NEW_SMALL_INT(offset);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(rp2_pio_add_program_obj, rp2_pio_add_program);
// PIO.remove_program([prog])
STATIC mp_obj_t rp2_pio_remove_program(size_t n_args, const mp_obj_t *args) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(args[0]);
// Default to remove all programs.
uint8_t length = 32;
uint offset = 0;
if (n_args > 1) {
// Get specific program to remove.
mp_obj_t *prog;
mp_obj_get_array_fixed_n(args[1], PROG_MAX_FIELDS, &prog);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(prog[PROG_DATA], &bufinfo, MP_BUFFER_READ);
length = bufinfo.len / 2;
offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]);
if (offset < 0) {
mp_raise_ValueError("prog not in instruction memory");
}
// Invalidate the program offset in the program object.
prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)] = MP_OBJ_NEW_SMALL_INT(-1);
}
// Remove the program from the instruction memory.
struct pio_program pio_program = { NULL, length, -1 };
pio_remove_program(self->pio, &pio_program, offset);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_pio_remove_program_obj, 1, 2, rp2_pio_remove_program);
// PIO.state_machine(id, prog, freq=-1, *, set=None)
STATIC mp_obj_t rp2_pio_state_machine(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
// Get and verify the state machine id.
mp_int_t sm_id = mp_obj_get_int(pos_args[1]);
if (!(0 <= sm_id && sm_id < 4)) {
mp_raise_ValueError("invalide state machine");
}
// Return the correct StateMachine object.
const rp2_state_machine_obj_t *sm = &rp2_state_machine_obj[(self->pio == pio0 ? 0 : 4) + sm_id];
if (n_args > 2 || kw_args->used > 0) {
// Configuration arguments given so init this StateMachine.
rp2_state_machine_init_helper(sm, n_args - 2, pos_args + 2, kw_args);
}
return MP_OBJ_FROM_PTR(sm);
}
MP_DEFINE_CONST_FUN_OBJ_KW(rp2_pio_state_machine_obj, 2, rp2_pio_state_machine);
// PIO.irq(handler=None, trigger=IRQ_SM0|IRQ_SM1|IRQ_SM2|IRQ_SM3, hard=False)
STATIC mp_obj_t rp2_pio_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_handler, ARG_trigger, ARG_hard };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = 0xf00} },
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
};
// Parse the arguments.
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the IRQ object.
rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]);
// Allocate the IRQ object if it doesn't already exist.
if (irq == NULL) {
irq = m_new_obj(rp2_pio_irq_obj_t);
irq->base.base.type = &mp_irq_type;
irq->base.methods = (mp_irq_methods_t *)&rp2_pio_irq_methods;
irq->base.parent = MP_OBJ_FROM_PTR(self);
irq->base.handler = mp_const_none;
irq->base.ishard = false;
MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]) = irq;
}
if (n_args > 1 || kw_args->used != 0) {
// Configure IRQ.
// Disable all IRQs while data is updated.
irq_set_enabled(self->irq, false);
// Update IRQ data.
irq->base.handler = args[ARG_handler].u_obj;
irq->base.ishard = args[ARG_hard].u_bool;
irq->flags = 0;
irq->trigger = args[ARG_trigger].u_int;
// Enable IRQ if a handler is given.
if (args[ARG_handler].u_obj != mp_const_none) {
self->pio->inte0 = irq->trigger;
irq_set_enabled(self->irq, true);
}
}
return MP_OBJ_FROM_PTR(irq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(rp2_pio_irq_obj, 1, rp2_pio_irq);
STATIC const mp_rom_map_elem_t rp2_pio_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_add_program), MP_ROM_PTR(&rp2_pio_add_program_obj) },
{ MP_ROM_QSTR(MP_QSTR_remove_program), MP_ROM_PTR(&rp2_pio_remove_program_obj) },
{ MP_ROM_QSTR(MP_QSTR_state_machine), MP_ROM_PTR(&rp2_pio_state_machine_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&rp2_pio_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_IN_LOW), MP_ROM_INT(0) },
{ MP_ROM_QSTR(MP_QSTR_IN_HIGH), MP_ROM_INT(1) },
{ MP_ROM_QSTR(MP_QSTR_OUT_LOW), MP_ROM_INT(2) },
{ MP_ROM_QSTR(MP_QSTR_OUT_HIGH), MP_ROM_INT(3) },
{ MP_ROM_QSTR(MP_QSTR_SHIFT_LEFT), MP_ROM_INT(0) },
{ MP_ROM_QSTR(MP_QSTR_SHIFT_RIGHT), MP_ROM_INT(1) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_SM0), MP_ROM_INT(0x100) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_SM1), MP_ROM_INT(0x200) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_SM2), MP_ROM_INT(0x400) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_SM3), MP_ROM_INT(0x800) },
};
STATIC MP_DEFINE_CONST_DICT(rp2_pio_locals_dict, rp2_pio_locals_dict_table);
const mp_obj_type_t rp2_pio_type = {
{ &mp_type_type },
.name = MP_QSTR_PIO,
.print = rp2_pio_print,
.make_new = rp2_pio_make_new,
.locals_dict = (mp_obj_dict_t *)&rp2_pio_locals_dict,
};
STATIC mp_uint_t rp2_pio_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in);
rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]);
irq_set_enabled(self->irq, false);
irq->flags = 0;
irq->trigger = new_trigger;
irq_set_enabled(self->irq, true);
return 0;
}
STATIC mp_uint_t rp2_pio_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in);
rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]);
if (info_type == MP_IRQ_INFO_FLAGS) {
return irq->flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return irq->trigger;
}
return 0;
}
STATIC const mp_irq_methods_t rp2_pio_irq_methods = {
.trigger = rp2_pio_irq_trigger,
.info = rp2_pio_irq_info,
};
/******************************************************************************/
// StateMachine object
STATIC const mp_irq_methods_t rp2_state_machine_irq_methods;
STATIC const rp2_state_machine_obj_t rp2_state_machine_obj[] = {
{ { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 0, 0 },
{ { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 1, 1 },
{ { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 2, 2 },
{ { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 3, 3 },
{ { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 0, 4 },
{ { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 1, 5 },
{ { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 2, 6 },
{ { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 3, 7 },
};
STATIC void rp2_state_machine_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "StateMachine(%u)", self->id);
}
// StateMachine.init(prog, freq=-1, *,
// in_base=None, out_base=None, set_base=None, sideset_base=None,
// in_shiftdir=None, out_shiftdir=None, push_thresh=None, pull_thresh=None,
// )
STATIC mp_obj_t rp2_state_machine_init_helper(const rp2_state_machine_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_prog, ARG_freq,
ARG_in_base, ARG_out_base, ARG_set_base, ARG_sideset_base,
ARG_in_shiftdir, ARG_out_shiftdir, ARG_push_thresh, ARG_pull_thresh
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_prog, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_in_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_out_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_set_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_sideset_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_in_shiftdir, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_out_shiftdir, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_push_thresh, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_pull_thresh, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the program.
mp_obj_t *prog;
mp_obj_get_array_fixed_n(args[ARG_prog].u_obj, PROG_MAX_FIELDS, &prog);
// Get and the program offset, and load it into memory if it's not already there.
mp_int_t offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]);
if (offset < 0) {
rp2_pio_add_program(&rp2_pio_obj[PIO_NUM(self->pio)], args[ARG_prog].u_obj);
offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]);
}
// Compute the clock divider.
float div;
if (args[ARG_freq].u_int < 0) {
div = 1;
} else if (args[ARG_freq].u_int == 0) {
div = 0;
} else {
div = (float)clock_get_hz(clk_sys) / (float)args[ARG_freq].u_int;
}
// Disable and reset the state machine.
pio_sm_init(self->pio, self->sm, offset, NULL);
// Build the state machine config.
pio_sm_config config = pio_get_default_sm_config();
sm_config_set_clkdiv(&config, div);
config.execctrl = mp_obj_get_int_truncated(prog[PROG_EXECCTRL]);
config.shiftctrl = mp_obj_get_int_truncated(prog[PROG_SHIFTCTRL]);
// Adjust wrap top/bottom to account for location of program in instruction memory.
config.execctrl += (offset << PIO_SM0_EXECCTRL_WRAP_TOP_LSB)
+ (offset << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
// Configure in pin base, if needed.
if (args[ARG_in_base].u_obj != mp_const_none) {
sm_config_set_in_pins(&config, mp_hal_get_pin_obj(args[ARG_in_base].u_obj));
}
// Configure out pins, if needed.
asm_pio_config_t out_config = ASM_PIO_CONFIG_DEFAULT;
asm_pio_get_pins("out", prog[PROG_OUT_PINS], args[ARG_out_base].u_obj, &out_config);
if (out_config.base >= 0) {
sm_config_set_out_pins(&config, out_config.base, out_config.count);
}
// Configure set pin, if needed.
asm_pio_config_t set_config = ASM_PIO_CONFIG_DEFAULT;
asm_pio_get_pins("set", prog[PROG_SET_PINS], args[ARG_set_base].u_obj, &set_config);
if (set_config.base >= 0) {
sm_config_set_set_pins(&config, set_config.base, set_config.count);
}
// Configure sideset pin, if needed.
asm_pio_config_t sideset_config = ASM_PIO_CONFIG_DEFAULT;
asm_pio_get_pins("sideset", prog[PROG_SIDESET_PINS], args[ARG_sideset_base].u_obj, &sideset_config);
if (sideset_config.base >= 0) {
uint32_t count = sideset_config.count;
if (config.execctrl & (1 << PIO_SM0_EXECCTRL_SIDE_EN_LSB)) {
// When sideset is optional, count includes the option bit.
++count;
}
config.pinctrl |= count << PIO_SM0_PINCTRL_SIDESET_COUNT_LSB;
sm_config_set_sideset_pins(&config, sideset_config.base);
}
// Override shift state if needed.
asm_pio_override_shiftctrl(args[ARG_in_shiftdir].u_obj, PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_BITS, PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_LSB, &config);
asm_pio_override_shiftctrl(args[ARG_out_shiftdir].u_obj, PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_BITS, PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_LSB, &config);
asm_pio_override_shiftctrl(args[ARG_push_thresh].u_obj, PIO_SM0_SHIFTCTRL_PUSH_THRESH_BITS, PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB, &config);
asm_pio_override_shiftctrl(args[ARG_pull_thresh].u_obj, PIO_SM0_SHIFTCTRL_PULL_THRESH_BITS, PIO_SM0_SHIFTCTRL_PULL_THRESH_LSB, &config);
// Configure the state machine.
pio_sm_set_config(self->pio, self->sm, &config);
// Configure the GPIO.
if (out_config.base >= 0) {
asm_pio_init_gpio(self->pio, self->sm, &out_config);
}
if (set_config.base >= 0) {
asm_pio_init_gpio(self->pio, self->sm, &set_config);
}
if (sideset_config.base >= 0) {
asm_pio_init_gpio(self->pio, self->sm, &sideset_config);
}
return mp_const_none;
}
// StateMachine(id, ...)
STATIC mp_obj_t rp2_state_machine_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get the StateMachine object.
mp_int_t sm_id = mp_obj_get_int(args[0]);
if (!(0 <= sm_id && sm_id < MP_ARRAY_SIZE(rp2_state_machine_obj))) {
mp_raise_ValueError("invalid StateMachine");
}
const rp2_state_machine_obj_t *self = &rp2_state_machine_obj[sm_id];
if (n_args > 1 || n_kw > 0) {
// Configuration arguments given so init this StateMachine.
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
rp2_state_machine_init_helper(self, n_args - 1, args + 1, &kw_args);
}
// Return the StateMachine object.
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t rp2_state_machine_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return rp2_state_machine_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(rp2_state_machine_init_obj, 1, rp2_state_machine_init);
// StateMachine.active([value])
STATIC mp_obj_t rp2_state_machine_active(size_t n_args, const mp_obj_t *args) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args > 1) {
pio_sm_set_enabled(self->pio, self->sm, mp_obj_is_true(args[1]));
}
return mp_obj_new_bool((self->pio->ctrl >> self->sm) & 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_active_obj, 1, 2, rp2_state_machine_active);
// StateMachine.exec(instr)
STATIC mp_obj_t rp2_state_machine_exec(mp_obj_t self_in, mp_obj_t instr_in) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t rp2_module = mp_import_name(MP_QSTR_rp2, mp_const_none, MP_OBJ_NEW_SMALL_INT(0));
mp_obj_t asm_pio_encode = mp_load_attr(rp2_module, MP_QSTR_asm_pio_encode);
uint32_t sideset_count = self->pio->sm[self->sm].pinctrl >> PIO_SM0_PINCTRL_SIDESET_COUNT_LSB;
mp_obj_t encoded_obj = mp_call_function_2(asm_pio_encode, instr_in, MP_OBJ_NEW_SMALL_INT(sideset_count));
mp_int_t encoded = mp_obj_get_int(encoded_obj);
pio_sm_exec(self->pio, self->sm, encoded);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(rp2_state_machine_exec_obj, rp2_state_machine_exec);
// StateMachine.get(buf=None, shift=0)
STATIC mp_obj_t rp2_state_machine_get(size_t n_args, const mp_obj_t *args) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_buffer_info_t bufinfo;
bufinfo.buf = NULL;
uint32_t shift = 0;
if (n_args > 1) {
if (args[1] != mp_const_none) {
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE);
if (bufinfo.typecode == BYTEARRAY_TYPECODE) {
bufinfo.typecode = 'b';
} else {
bufinfo.typecode |= 0x20; // make lowercase to support upper and lower
}
}
if (n_args > 2) {
shift = mp_obj_get_int(args[2]);
}
}
uint8_t *dest = bufinfo.buf;
const uint8_t *dest_top = dest + bufinfo.len;
for (;;) {
while (pio_sm_is_rx_fifo_empty(self->pio, self->sm)) {
// This delay must be fast.
mp_handle_pending(true);
MICROPY_HW_USBDEV_TASK_HOOK
}
uint32_t value = pio_sm_get(self->pio, self->sm) >> shift;
if (dest == NULL) {
return mp_obj_new_int_from_uint(value);
}
if (dest >= dest_top) {
return args[1];
}
if (bufinfo.typecode == 'b') {
*(uint8_t *)dest = value;
dest += sizeof(uint8_t);
} else if (bufinfo.typecode == 'h') {
*(uint16_t *)dest = value;
dest += sizeof(uint16_t);
} else if (bufinfo.typecode == 'i') {
*(uint32_t *)dest = value;
dest += sizeof(uint32_t);
} else {
mp_raise_ValueError("unsupported buffer type");
}
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_get_obj, 1, 3, rp2_state_machine_get);
// StateMachine.put(value, shift=0)
STATIC mp_obj_t rp2_state_machine_put(size_t n_args, const mp_obj_t *args) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t shift = 0;
if (n_args > 2) {
shift = mp_obj_get_int(args[2]);
}
uint32_t data;
mp_buffer_info_t bufinfo;
if (!mp_get_buffer(args[1], &bufinfo, MP_BUFFER_READ)) {
data = mp_obj_get_int_truncated(args[1]);
bufinfo.buf = &data;
bufinfo.len = sizeof(uint32_t);
bufinfo.typecode = 'I';
}
const uint8_t *src = bufinfo.buf;
const uint8_t *src_top = src + bufinfo.len;
while (src < src_top) {
uint32_t value;
if (bufinfo.typecode == 'B' || bufinfo.typecode == BYTEARRAY_TYPECODE) {
value = *(uint8_t *)src;
src += sizeof(uint8_t);
} else if (bufinfo.typecode == 'H') {
value = *(uint16_t *)src;
src += sizeof(uint16_t);
} else if (bufinfo.typecode == 'I') {
value = *(uint32_t *)src;
src += sizeof(uint32_t);
} else {
mp_raise_ValueError("unsupported buffer type");
}
while (pio_sm_is_tx_fifo_full(self->pio, self->sm)) {
// This delay must be fast.
mp_handle_pending(true);
MICROPY_HW_USBDEV_TASK_HOOK
}
pio_sm_put(self->pio, self->sm, value << shift);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_put_obj, 2, 3, rp2_state_machine_put);
// StateMachine.irq(handler=None, trigger=0|1, hard=False)
STATIC mp_obj_t rp2_state_machine_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_handler, ARG_trigger, ARG_hard };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
};
// Parse the arguments.
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get the IRQ object.
rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[self->id]);
// Allocate the IRQ object if it doesn't already exist.
if (irq == NULL) {
irq = m_new_obj(rp2_state_machine_irq_obj_t);
irq->base.base.type = &mp_irq_type;
irq->base.methods = (mp_irq_methods_t *)&rp2_state_machine_irq_methods;
irq->base.parent = MP_OBJ_FROM_PTR(self);
irq->base.handler = mp_const_none;
irq->base.ishard = false;
MP_STATE_PORT(rp2_state_machine_irq_obj[self->id]) = irq;
}
if (n_args > 1 || kw_args->used != 0) {
// Configure IRQ.
// Disable all IRQs while data is updated.
irq_set_enabled(self->irq, false);
// Update IRQ data.
irq->base.handler = args[ARG_handler].u_obj;
irq->base.ishard = args[ARG_hard].u_bool;
irq->flags = 0;
irq->trigger = args[ARG_trigger].u_int;
// Enable IRQ if a handler is given.
if (args[ARG_handler].u_obj == mp_const_none) {
self->pio->inte0 &= ~(1 << (8 + self->sm));
} else {
self->pio->inte0 |= 1 << (8 + self->sm);
}
if (self->pio->inte0) {
irq_set_enabled(self->irq, true);
}
}
return MP_OBJ_FROM_PTR(irq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(rp2_state_machine_irq_obj, 1, rp2_state_machine_irq);
STATIC const mp_rom_map_elem_t rp2_state_machine_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&rp2_state_machine_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&rp2_state_machine_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_exec), MP_ROM_PTR(&rp2_state_machine_exec_obj) },
{ MP_ROM_QSTR(MP_QSTR_get), MP_ROM_PTR(&rp2_state_machine_get_obj) },
{ MP_ROM_QSTR(MP_QSTR_put), MP_ROM_PTR(&rp2_state_machine_put_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&rp2_state_machine_irq_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rp2_state_machine_locals_dict, rp2_state_machine_locals_dict_table);
const mp_obj_type_t rp2_state_machine_type = {
{ &mp_type_type },
.name = MP_QSTR_StateMachine,
.print = rp2_state_machine_print,
.make_new = rp2_state_machine_make_new,
.locals_dict = (mp_obj_dict_t *)&rp2_state_machine_locals_dict,
};
STATIC mp_uint_t rp2_state_machine_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in);
rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(self->pio)]);
irq_set_enabled(self->irq, false);
irq->flags = 0;
irq->trigger = new_trigger;
irq_set_enabled(self->irq, true);
return 0;
}
STATIC mp_uint_t rp2_state_machine_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in);
rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(self->pio)]);
if (info_type == MP_IRQ_INFO_FLAGS) {
return irq->flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return irq->trigger;
}
return 0;
}
STATIC const mp_irq_methods_t rp2_state_machine_irq_methods = {
.trigger = rp2_state_machine_irq_trigger,
.info = rp2_state_machine_irq_info,
};

34
ports/rp2/tusb_config.h

@ -0,0 +1,34 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef MICROPY_INCLUDED_RP2_TUSB_CONFIG_H
#define MICROPY_INCLUDED_RP2_TUSB_CONFIG_H
#define CFG_TUSB_RHPORT0_MODE (OPT_MODE_DEVICE)
#define CFG_TUD_CDC (1)
#define CFG_TUD_CDC_RX_BUFSIZE (256)
#define CFG_TUD_CDC_TX_BUFSIZE (256)
#endif // MICROPY_INCLUDED_RP2_TUSB_CONFIG_H

115
ports/rp2/tusb_port.c

@ -0,0 +1,115 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tusb.h"
#define USBD_VID (0x2E8A) // Raspberry Pi
#define USBD_PID (0x0005) // RP2 MicroPython
#define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN)
#define USBD_MAX_POWER_MA (250)
#define USBD_ITF_CDC (0) // needs 2 interfaces
#define USBD_ITF_MAX (2)
#define USBD_CDC_EP_CMD (0x81)
#define USBD_CDC_EP_OUT (0x02)
#define USBD_CDC_EP_IN (0x82)
#define USBD_CDC_CMD_MAX_SIZE (8)
#define USBD_CDC_IN_OUT_MAX_SIZE (64)
#define USBD_STR_0 (0x00)
#define USBD_STR_MANUF (0x01)
#define USBD_STR_PRODUCT (0x02)
#define USBD_STR_SERIAL (0x03)
#define USBD_STR_CDC (0x04)
// Note: descriptors returned from callbacks must exist long enough for transfer to complete
static const tusb_desc_device_t usbd_desc_device = {
.bLength = sizeof(tusb_desc_device_t),
.bDescriptorType = TUSB_DESC_DEVICE,
.bcdUSB = 0x0200,
.bDeviceClass = TUSB_CLASS_MISC,
.bDeviceSubClass = MISC_SUBCLASS_COMMON,
.bDeviceProtocol = MISC_PROTOCOL_IAD,
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
.idVendor = USBD_VID,
.idProduct = USBD_PID,
.bcdDevice = 0x0100,
.iManufacturer = USBD_STR_MANUF,
.iProduct = USBD_STR_PRODUCT,
.iSerialNumber = USBD_STR_SERIAL,
.bNumConfigurations = 1,
};
static const uint8_t usbd_desc_cfg[USBD_DESC_LEN] = {
TUD_CONFIG_DESCRIPTOR(1, USBD_ITF_MAX, USBD_STR_0, USBD_DESC_LEN,
TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, USBD_MAX_POWER_MA),
TUD_CDC_DESCRIPTOR(USBD_ITF_CDC, USBD_STR_CDC, USBD_CDC_EP_CMD,
USBD_CDC_CMD_MAX_SIZE, USBD_CDC_EP_OUT, USBD_CDC_EP_IN, USBD_CDC_IN_OUT_MAX_SIZE),
};
static const char *const usbd_desc_str[] = {
[USBD_STR_MANUF] = "MicroPython",
[USBD_STR_PRODUCT] = "Board in FS mode",
[USBD_STR_SERIAL] = "000000000000", // TODO
[USBD_STR_CDC] = "Board CDC",
};
const uint8_t *tud_descriptor_device_cb(void) {
return (const uint8_t *)&usbd_desc_device;
}
const uint8_t *tud_descriptor_configuration_cb(uint8_t index) {
(void)index;
return usbd_desc_cfg;
}
const uint16_t *tud_descriptor_string_cb(uint8_t index, uint16_t langid) {
#define DESC_STR_MAX (20)
static uint16_t desc_str[DESC_STR_MAX];
uint8_t len;
if (index == 0) {
desc_str[1] = 0x0409; // supported language is English
len = 1;
} else {
if (index >= sizeof(usbd_desc_str) / sizeof(usbd_desc_str[0])) {
return NULL;
}
const char *str = usbd_desc_str[index];
for (len = 0; len < DESC_STR_MAX - 1 && str[len]; ++len) {
desc_str[1 + len] = str[len];
}
}
// first byte is length (including header), second byte is string type
desc_str[0] = (TUSB_DESC_STRING << 8) | (2 * len + 2);
return desc_str;
}

63
ports/rp2/uart.c

@ -0,0 +1,63 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/ringbuf.h"
#include "py/mphal.h"
#include "uart.h"
#include "hardware/uart.h"
#include "hardware/irq.h"
#include "hardware/regs/uart.h"
#if MICROPY_HW_ENABLE_UART_REPL
void uart_irq(void) {
uart_get_hw(uart_default)->icr = UART_UARTICR_BITS; // clear interrupt flags
if (uart_is_readable(uart_default)) {
int c = uart_getc(uart_default);
#if MICROPY_KBD_EXCEPTION
if (c == mp_interrupt_char) {
mp_keyboard_interrupt();
return;
}
#endif
ringbuf_put(&stdin_ringbuf, c);
}
}
void mp_uart_init(void) {
uart_get_hw(uart_default)->imsc = UART_UARTIMSC_BITS; // enable mask
uint irq_num = uart_get_index(uart_default) ? UART1_IRQ : UART0_IRQ;
irq_set_exclusive_handler(irq_num, uart_irq);
irq_set_enabled(irq_num, true); // enable irq
}
void mp_uart_write_strn(const char *str, size_t len) {
uart_write_blocking(uart_default, (const uint8_t *)str, len);
}
#endif

32
ports/rp2/uart.h

@ -0,0 +1,32 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_RP2_UART_H
#define MICROPY_INCLUDED_RP2_UART_H
void mp_uart_init(void);
void mp_uart_write_strn(const char *str, size_t len);
#endif // MICROPY_INCLUDED_RP2_UART_H
Loading…
Cancel
Save