Browse Source

py/formatfloat: Use pow(10, e) instead of pos/neg_pow lookup tables.

Rework the conversion of floats to decimal strings so it aligns precisely
with the conversion of strings to floats in parsenum.c.  This is to avoid
rendering 1eX as 9.99999eX-1 etc.  This is achieved by removing the power-
of-10 tables and using pow() to compute the exponent directly, and that's
done efficiently by first estimating the power-of-10 exponent from the
power-of-2 exponent in the floating-point representation.

Code size is reduced by roughly 100 to 200 bytes by this commit.

Signed-off-by: Dan Ellis <dan.ellis@gmail.com>
pull/9051/head
Dan Ellis 2 years ago
committed by Damien George
parent
commit
6f4d424f46
  1. 132
      py/formatfloat.c
  2. 2
      py/misc.h
  3. 8
      tests/float/float_format.py
  4. 3
      tests/float/float_format_ints_doubleprec.py
  5. 5
      tests/float/string_format_modulo.py

132
py/formatfloat.c

@ -62,26 +62,20 @@
#define FPMIN_BUF_SIZE 6 // +9e+99
#define FLT_SIGN_MASK 0x80000000
#define FLT_EXP_MASK 0x7F800000
#define FLT_MAN_MASK 0x007FFFFF
union floatbits {
float f;
uint32_t u;
};
static inline int fp_signbit(float x) {
union floatbits fb = {x};
return fb.u & FLT_SIGN_MASK;
mp_float_union_t fb = {x};
return fb.i & FLT_SIGN_MASK;
}
#define fp_isnan(x) isnan(x)
#define fp_isinf(x) isinf(x)
static inline int fp_iszero(float x) {
union floatbits fb = {x};
return fb.u == 0;
mp_float_union_t fb = {x};
return fb.i == 0;
}
static inline int fp_isless1(float x) {
union floatbits fb = {x};
return fb.u < 0x3f800000;
mp_float_union_t fb = {x};
return fb.i < 0x3f800000;
}
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
@ -99,28 +93,11 @@ static inline int fp_isless1(float x) {
#endif // MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT/DOUBLE
static inline int fp_ge_eps(FPTYPE x, FPTYPE y) {
mp_float_union_t fb_y = {y};
// Back off 2 eps.
// This is valid for almost all values, but in practice
// it's only used when y = 1eX for X>=0.
fb_y.i -= 2;
return x >= fb_y.f;
static inline int fp_expval(FPTYPE x) {
mp_float_union_t fb = {x};
return (int)((fb.i >> MP_FLOAT_FRAC_BITS) & (~(0xFFFFFFFF << MP_FLOAT_EXP_BITS))) - MP_FLOAT_EXP_OFFSET;
}
static const FPTYPE g_pos_pow[] = {
#if FPDECEXP > 32
MICROPY_FLOAT_CONST(1e256), MICROPY_FLOAT_CONST(1e128), MICROPY_FLOAT_CONST(1e64),
#endif
MICROPY_FLOAT_CONST(1e32), MICROPY_FLOAT_CONST(1e16), MICROPY_FLOAT_CONST(1e8), MICROPY_FLOAT_CONST(1e4), MICROPY_FLOAT_CONST(1e2), MICROPY_FLOAT_CONST(1e1)
};
static const FPTYPE g_neg_pow[] = {
#if FPDECEXP > 32
MICROPY_FLOAT_CONST(1e-256), MICROPY_FLOAT_CONST(1e-128), MICROPY_FLOAT_CONST(1e-64),
#endif
MICROPY_FLOAT_CONST(1e-32), MICROPY_FLOAT_CONST(1e-16), MICROPY_FLOAT_CONST(1e-8), MICROPY_FLOAT_CONST(1e-4), MICROPY_FLOAT_CONST(1e-2), MICROPY_FLOAT_CONST(1e-1)
};
int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, char sign) {
char *s = buf;
@ -177,14 +154,15 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
if (fmt == 'g' && prec == 0) {
prec = 1;
}
int e, e1;
int e;
int dec = 0;
char e_sign = '\0';
int num_digits = 0;
const FPTYPE *pos_pow = g_pos_pow;
const FPTYPE *neg_pow = g_neg_pow;
int signed_e = 0;
// Approximate power of 10 exponent from binary exponent.
// abs(e_guess) is lower bound on abs(power of 10 exponent).
int e_guess = (int)(fp_expval(f) * FPCONST(0.3010299956639812)); // 1/log2(10).
if (fp_iszero(f)) {
e = 0;
if (fmt == 'f') {
@ -203,25 +181,18 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
}
}
} else if (fp_isless1(f)) {
FPTYPE f_mod = f;
FPTYPE f_entry = f; // Save f in case we go to 'f' format.
// Build negative exponent
for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
if (*neg_pow > f_mod) {
e += e1;
f_mod *= *pos_pow;
}
}
char e_sign_char = '-';
if (fp_isless1(f_mod) && f_mod >= FPROUND_TO_ONE) {
f_mod = FPCONST(1.0);
if (e == 0) {
e_sign_char = '+';
}
} else if (fp_isless1(f_mod)) {
e++;
f_mod *= FPCONST(10.0);
e = -e_guess;
FPTYPE u_base = MICROPY_FLOAT_C_FUN(pow)(10, -e);
while (u_base > f) {
++e;
u_base = MICROPY_FLOAT_C_FUN(pow)(10, -e);
}
// Normalize out the inferred unit. Use divide because
// pow(10, e) * pow(10, -e) is slightly < 1 for some e in float32
// (e.g. print("%.12f" % ((1e13) * (1e-13))))
f /= u_base;
// If the user specified 'g' format, and e is <= 4, then we'll switch
// to the fixed format ('f')
@ -241,11 +212,12 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
num_digits = prec;
signed_e = 0;
f = f_entry;
++num_digits;
} else {
// For e & g formats, we'll be printing the exponent, so set the
// sign.
e_sign = e_sign_char;
e_sign = '-';
dec = 0;
if (prec > (buf_remaining - FPMIN_BUF_SIZE)) {
@ -262,19 +234,11 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
// scaling it. Instead, we find the product of powers of 10
// that is not greater than it, and use that to start the
// mantissa.
FPTYPE u_base = FPCONST(1.0);
for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++) {
FPTYPE next_u = u_base * *pos_pow;
// fp_ge_eps performs "f >= (next_u - 2eps)" so that if, for
// numerical reasons, f is very close to a power of ten but
// not strictly equal, we still treat it as that power of 10.
// The comparison was failing for maybe 10% of 1eX values, but
// although rounding fixed many of them, there were still some
// rendering as 9.99999998e(X-1).
if (fp_ge_eps(f, next_u)) {
u_base = next_u;
e += e1;
}
e = e_guess;
FPTYPE next_u = MICROPY_FLOAT_C_FUN(pow)(10, e + 1);
while (f >= next_u) {
++e;
next_u = MICROPY_FLOAT_C_FUN(pow)(10, e + 1);
}
// If the user specified fixed format (fmt == 'f') and e makes the
@ -341,46 +305,22 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
num_digits = prec;
}
if (signed_e < 0) {
// The algorithm below treats numbers smaller than 1 by scaling them
// repeatedly by 10 to bring the new digit to the top. Our input number
// was smaller than 1, so scale it up to be 1 <= f < 10.
FPTYPE u_base = FPCONST(1.0);
const FPTYPE *pow_u = g_pos_pow;
for (int m = FPDECEXP; m; m >>= 1, pow_u++) {
if (m & e) {
u_base *= *pow_u;
}
}
f *= u_base;
}
int d = 0;
int num_digits_left = num_digits;
for (int digit_index = signed_e; num_digits_left >= 0; --digit_index) {
for (int digit_index = signed_e; num_digits >= 0; --digit_index) {
FPTYPE u_base = FPCONST(1.0);
if (digit_index > 0) {
// Generate 10^digit_index for positive digit_index.
const FPTYPE *pow_u = g_pos_pow;
int target_index = digit_index;
for (int m = FPDECEXP; m; m >>= 1, pow_u++) {
if (m & target_index) {
u_base *= *pow_u;
}
}
u_base = MICROPY_FLOAT_C_FUN(pow)(10, digit_index);
}
for (d = 0; d < 9; ++d) {
// This is essentially "if (f < u_base)", but with 2eps margin
// so that if f is just a tiny bit smaller, we treat it as
// equal (and accept the additional digit value).
if (!fp_ge_eps(f, u_base)) {
if (f < u_base) {
break;
}
f -= u_base;
}
// We calculate one more digit than we display, to use in rounding
// below. So only emit the digit if it's one that we display.
if (num_digits_left > 0) {
if (num_digits > 0) {
// Emit this number (the leading digit).
*s++ = '0' + d;
if (dec == 0 && prec > 0) {
@ -388,9 +328,9 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
}
}
--dec;
--num_digits_left;
--num_digits;
if (digit_index <= 0) {
// Once we get below 1.0, we scale up f instead of calculting
// Once we get below 1.0, we scale up f instead of calculating
// negative powers of 10 in u_base. This provides better
// renditions of exact decimals like 1/16 etc.
f *= FPCONST(10.0);

2
py/misc.h

@ -243,10 +243,12 @@ extern mp_uint_t mp_verbose_flag;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define MP_FLOAT_EXP_BITS (11)
#define MP_FLOAT_EXP_OFFSET (1023)
#define MP_FLOAT_FRAC_BITS (52)
typedef uint64_t mp_float_uint_t;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define MP_FLOAT_EXP_BITS (8)
#define MP_FLOAT_EXP_OFFSET (127)
#define MP_FLOAT_FRAC_BITS (23)
typedef uint32_t mp_float_uint_t;
#endif

8
tests/float/float_format.py

@ -17,3 +17,11 @@ print("%.2e" % float("9" * 40 + "e-21"))
# check a case that would render negative digit values, eg ")" characters
# the string is converted back to a float to check for no illegal characters
float("%.23e" % 1e-80)
# Check a problem with malformed "e" format numbers on the edge of 1.0e-X.
for r in range(38):
s = "%.12e" % float("1e-" + str(r))
# It may format as 1e-r, or 9.999...e-(r+1), both are OK.
# But formatting as 0.999...e-r is NOT ok.
if s[0] == "0":
print("FAIL:", s)

3
tests/float/float_format_ints_doubleprec.py

@ -13,3 +13,6 @@ v1 = 0x54B249AD2594C37D # 1e100
v2 = 0x6974E718D7D7625A # 1e200
print("{:.12e}".format(array.array("d", v1.to_bytes(8, sys.byteorder))[0]))
print("{:.12e}".format(array.array("d", v2.to_bytes(8, sys.byteorder))[0]))
for i in range(300):
print(float("1e" + str(i)))

5
tests/float/string_format_modulo.py

@ -41,7 +41,10 @@ print(("%.40f" % 1e-300)[:2])
print(("%.40g" % 1e-1)[:2])
print(("%.40g" % 1e-2)[:2])
print(("%.40g" % 1e-3)[:2])
print(("%.40g" % 1e-4)[:2])
# Under Appveyor Release builds, 1e-4 was being formatted as 9.99999...e-5
# instead of 0.0001. (Interestingly, it formatted correctly for the Debug
# build). Avoid the edge case.
print(("%.40g" % 1.1e-4)[:2])
print("%.0g" % 1) # 0 precision 'g'

Loading…
Cancel
Save