|
|
@ -68,7 +68,7 @@ mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); |
|
|
|
|
|
|
|
/// \function rect(r, phi)
|
|
|
|
/// Returns the complex number with modules `r` and phase `phi`.
|
|
|
|
/// Returns the complex number with modulus `r` and phase `phi`.
|
|
|
|
mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { |
|
|
|
mp_float_t r = mp_obj_get_float(r_obj); |
|
|
|
mp_float_t phi = mp_obj_get_float(phi_obj); |
|
|
@ -77,6 +77,7 @@ mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); |
|
|
|
|
|
|
|
/// \function exp(z)
|
|
|
|
/// Return the exponential of `z`.
|
|
|
|
mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
|
mp_obj_get_complex(z_obj, &real, &imag); |
|
|
@ -86,6 +87,7 @@ mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); |
|
|
|
|
|
|
|
/// \function log(z)
|
|
|
|
/// Return the natural logarithm of `z`. The branch cut is along the negative real axis.
|
|
|
|
// TODO can take second argument, being the base
|
|
|
|
mp_obj_t mp_cmath_log(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
@ -95,6 +97,7 @@ mp_obj_t mp_cmath_log(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); |
|
|
|
|
|
|
|
/// \function log10(z)
|
|
|
|
/// Return the base-10 logarithm of `z`. The branch cut is along the negative real axis.
|
|
|
|
mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
|
mp_obj_get_complex(z_obj, &real, &imag); |
|
|
@ -103,6 +106,7 @@ mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); |
|
|
|
|
|
|
|
/// \function sqrt(z)
|
|
|
|
/// Return the square-root of `z`.
|
|
|
|
mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
|
mp_obj_get_complex(z_obj, &real, &imag); |
|
|
@ -113,6 +117,7 @@ mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); |
|
|
|
|
|
|
|
/// \function cos(z)
|
|
|
|
/// Return the cosine of `z`.
|
|
|
|
mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
|
mp_obj_get_complex(z_obj, &real, &imag); |
|
|
@ -121,6 +126,7 @@ mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { |
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); |
|
|
|
|
|
|
|
/// \function sin(z)
|
|
|
|
/// Return the sine of `z`.
|
|
|
|
mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { |
|
|
|
mp_float_t real, imag; |
|
|
|
mp_obj_get_complex(z_obj, &real, &imag); |
|
|
|