Browse Source

samd/machine_rtc: Add the machine.RTC class.

Methods implemented are:
- rtc.init(date)
- rtc.datetime([new_date])
- rtc.calibration(value)

The presence of this class can be controlled by MICROPY_PY_MACHINE_RTC.  If
the RTC module is used, the time module uses the RTC as well.

For boards without a 32kHz crystal, using RTC makes no sense, since it will
then use the ULP32K oscillator, which is not precise at all.  Therefore, it
will by default only be enabled for boards using a crystal, but can be
enabled in the respective mpconfigboard.h.
pull/9753/head
robert-hh 2 years ago
committed by Damien George
parent
commit
fc9d66fac6
  1. 1
      ports/samd/Makefile
  2. 6
      ports/samd/fatfs_port.c
  3. 181
      ports/samd/machine_rtc.c
  4. 17
      ports/samd/mcu/samd21/clock_config.c
  5. 6
      ports/samd/mcu/samd21/mpconfigmcu.h
  6. 20
      ports/samd/mcu/samd51/clock_config.c
  7. 6
      ports/samd/mcu/samd51/mpconfigmcu.h
  8. 3
      ports/samd/modmachine.c
  9. 3
      ports/samd/modmachine.h
  10. 30
      ports/samd/modutime.c
  11. 7
      ports/samd/samd_soc.c

1
ports/samd/Makefile

@ -94,6 +94,7 @@ SRC_C += \
machine_i2c.c \
machine_led.c \
machine_pin.c \
machine_rtc.c \
machine_spi.c \
machine_timer.c \
machine_uart.c \

6
ports/samd/fatfs_port.c

@ -33,9 +33,13 @@
extern uint32_t time_offset;
MP_WEAK DWORD get_fattime(void) {
#if MICROPY_PY_MACHINE_RTC
return (RTC->MODE2.CLOCK.reg >> 1) + (20 << 25);
#else
extern void rtc_gettime(timeutils_struct_time_t *tm);
timeutils_struct_time_t tm;
timeutils_seconds_since_epoch_to_struct_time(mp_hal_ticks_ms_64() / 1000 + time_offset, &tm);
return ((tm.tm_year - 1980) << 25) | ((tm.tm_mon) << 21) | ((tm.tm_mday) << 16) |
((tm.tm_hour) << 11) | ((tm.tm_min) << 5) | (tm.tm_sec / 2);
#endif
}

181
ports/samd/machine_rtc.c

@ -0,0 +1,181 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Damien P. George
* Copyright (c) 2022 "Robert Hammelrath" <robert@hammelrath.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "shared/timeutils/timeutils.h"
#include "modmachine.h"
#include "py/mphal.h"
#include "sam.h"
#if MICROPY_PY_MACHINE_RTC
typedef struct _machine_rtc_obj_t {
mp_obj_base_t base;
mp_obj_t callback;
} machine_rtc_obj_t;
// Singleton RTC object.
STATIC const machine_rtc_obj_t machine_rtc_obj = {{&machine_rtc_type}};
// Start the RTC Timer.
void machine_rtc_start(bool force) {
#if defined(MCU_SAMD21)
if (RTC->MODE2.CTRL.bit.ENABLE == 0 || force) {
// Enable the 1k Clock
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK8 | GCLK_CLKCTRL_ID_RTC;
RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_SWRST;
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
RTC->MODE2.CTRL.reg =
RTC_MODE2_CTRL_MODE_CLOCK |
RTC_MODE2_CTRL_PRESCALER_DIV1024 |
RTC_MODE2_CTRL_ENABLE;
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
}
#elif defined(MCU_SAMD51)
if (RTC->MODE2.CTRLA.bit.ENABLE == 0 || force) {
RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_SWRST;
while (RTC->MODE2.SYNCBUSY.bit.SWRST) {
}
RTC->MODE2.CTRLA.reg =
RTC_MODE2_CTRLA_MODE_CLOCK |
RTC_MODE2_CTRLA_CLOCKSYNC |
RTC_MODE2_CTRLA_PRESCALER_DIV1024 |
RTC_MODE2_CTRLA_ENABLE;
while (RTC->MODE2.SYNCBUSY.bit.ENABLE) {
}
}
#endif
}
// Get the time from the RTC and put it into a tm struct.
void rtc_gettime(timeutils_struct_time_t *tm) {
tm->tm_year = RTC->MODE2.CLOCK.bit.YEAR + 2000;
tm->tm_mon = RTC->MODE2.CLOCK.bit.MONTH;
tm->tm_mday = RTC->MODE2.CLOCK.bit.DAY;
tm->tm_hour = RTC->MODE2.CLOCK.bit.HOUR;
tm->tm_min = RTC->MODE2.CLOCK.bit.MINUTE;
tm->tm_sec = RTC->MODE2.CLOCK.bit.SECOND;
}
STATIC mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// Check arguments.
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// RTC was already started at boot time. So nothing to do here.
// Return constant object.
return (mp_obj_t)&machine_rtc_obj;
}
STATIC mp_obj_t machine_rtc_datetime_helper(size_t n_args, const mp_obj_t *args) {
// Rtc *rtc = RTC;
if (n_args == 1) {
// Get date and time.
timeutils_struct_time_t tm;
rtc_gettime(&tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(timeutils_calc_weekday(tm.tm_year, tm.tm_mon, tm.tm_mday)),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(0),
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set date and time.
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
uint32_t date =
RTC_MODE2_CLOCK_YEAR(mp_obj_get_int(items[0]) % 100) |
RTC_MODE2_CLOCK_MONTH(mp_obj_get_int(items[1])) |
RTC_MODE2_CLOCK_DAY(mp_obj_get_int(items[2])) |
RTC_MODE2_CLOCK_HOUR(mp_obj_get_int(items[4])) |
RTC_MODE2_CLOCK_MINUTE(mp_obj_get_int(items[5])) |
RTC_MODE2_CLOCK_SECOND(mp_obj_get_int(items[6]));
RTC->MODE2.CLOCK.reg = date;
#if defined(MCU_SAMD21)
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {
}
#elif defined(MCU_SAMD51)
while (RTC->MODE2.SYNCBUSY.bit.CLOCKSYNC) {
}
#endif
return mp_const_none;
}
}
STATIC mp_obj_t machine_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
return machine_rtc_datetime_helper(n_args, args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_rtc_datetime_obj, 1, 2, machine_rtc_datetime);
STATIC mp_obj_t machine_rtc_init(mp_obj_t self_in, mp_obj_t date) {
mp_obj_t args[2] = {self_in, date};
machine_rtc_datetime_helper(2, args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_init_obj, machine_rtc_init);
// calibration(cal)
// When the argument is a number in the range [-16 to 15], set the calibration value.
STATIC mp_obj_t machine_rtc_calibration(mp_obj_t self_in, mp_obj_t cal_in) {
int8_t cal = 0;
// Make it negative for a "natural" behavior:
// value > 0: faster, value < 0: slower
cal = -mp_obj_get_int(cal_in);
RTC->MODE2.FREQCORR.reg = (uint8_t)cal;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_calibration_obj, machine_rtc_calibration);
STATIC const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_rtc_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&machine_rtc_datetime_obj) },
{ MP_ROM_QSTR(MP_QSTR_calibration), MP_ROM_PTR(&machine_rtc_calibration_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_rtc_type,
MP_QSTR_RTC,
MP_TYPE_FLAG_NONE,
make_new, machine_rtc_make_new,
locals_dict, &machine_rtc_locals_dict
);
#endif // MICROPY_PY_MACHINE_RTC

17
ports/samd/mcu/samd21/clock_config.c

@ -141,7 +141,7 @@ void init_clocks(uint32_t cpu_freq) {
// GCLK3: 1Mhz for the us-counter (TC4/TC5)
// GCLK4: 32kHz from crystal, if present
// GCLK5: 48MHz from DFLL for USB
// GCLK8: 1kHz clock for WDT
// GCLK8: 1kHz clock for WDT and RTC
NVMCTRL->CTRLB.bit.MANW = 1; // errata "Spurious Writes"
NVMCTRL->CTRLB.bit.RWS = 1; // 1 read wait state for 48MHz
@ -203,6 +203,11 @@ void init_clocks(uint32_t cpu_freq) {
SYSCTRL_DFLLCTRL_BPLCKC | SYSCTRL_DFLLCTRL_ENABLE;
while (SYSCTRL->PCLKSR.bit.DFLLLCKF == 0) {
}
// Set GCLK8 to 1 kHz.
GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32);
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(8);
while (GCLK->STATUS.bit.SYNCBUSY) {
}
#else // MICROPY_HW_XOSC32K
@ -242,6 +247,11 @@ void init_clocks(uint32_t cpu_freq) {
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(1);
while (GCLK->STATUS.bit.SYNCBUSY) {
}
// Set GCLK8 to 1 kHz.
GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32);
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(8);
while (GCLK->STATUS.bit.SYNCBUSY) {
}
#endif // MICROPY_HW_XOSC32K
@ -252,11 +262,6 @@ void init_clocks(uint32_t cpu_freq) {
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(3);
while (GCLK->STATUS.bit.SYNCBUSY) {
}
// Set GCLK8 to 1 kHz.
GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32);
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(8);
while (GCLK->STATUS.bit.SYNCBUSY) {
}
}
void enable_sercom_clock(int id) {

6
ports/samd/mcu/samd21/mpconfigmcu.h

@ -28,6 +28,12 @@
#define MICROPY_HW_UART_TXBUF (1)
#endif
#ifndef MICROPY_PY_MACHINE_RTC
#if MICROPY_HW_XOSC32K
#define MICROPY_PY_MACHINE_RTC (1)
#endif
#endif
#define CPU_FREQ (48000000)
#define DFLL48M_FREQ (48000000)
#define MAX_CPU_FREQ (48000000)

20
ports/samd/mcu/samd51/clock_config.c

@ -215,16 +215,19 @@ void init_clocks(uint32_t cpu_freq) {
#if MICROPY_HW_XOSC32K
// OSCILLATOR CONTROL
// Enable the clock for RTC
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K;
// Setup XOSC32K
OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL;
OSC32KCTRL->XOSC32K.bit.CGM = OSC32KCTRL_XOSC32K_CGM_HS_Val;
OSC32KCTRL->XOSC32K.bit.XTALEN = 1; // 0: Generator 1: Crystal
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
OSC32KCTRL->XOSC32K.bit.ONDEMAND = 0;
OSC32KCTRL->XOSC32K.bit.RUNSTDBY = 1;
OSC32KCTRL->XOSC32K.bit.STARTUP = 4;
OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail
OSC32KCTRL->XOSC32K.bit.ENABLE = 1;
OSC32KCTRL->XOSC32K.reg =
OSC32KCTRL_XOSC32K_CGM_HS |
OSC32KCTRL_XOSC32K_XTALEN |
OSC32KCTRL_XOSC32K_EN32K |
OSC32KCTRL_XOSC32K_EN1K |
OSC32KCTRL_XOSC32K_RUNSTDBY |
OSC32KCTRL_XOSC32K_STARTUP(4) |
OSC32KCTRL_XOSC32K_ENABLE;
// make sure osc32kcrtl is ready
while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) {
}
@ -270,6 +273,9 @@ void init_clocks(uint32_t cpu_freq) {
#else // MICROPY_HW_XOSC32K
// Enable the clock for RTC
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K;
// Derive GCLK1 from DFLL48M at DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz)
GCLK->GENCTRL[1].reg = ((DFLL48M_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos
| GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;

6
ports/samd/mcu/samd51/mpconfigmcu.h

@ -28,6 +28,12 @@
#define MICROPY_PY_URANDOM_SEED_INIT_FUNC (trng_random_u32())
unsigned long trng_random_u32(void);
#ifndef MICROPY_PY_MACHINE_RTC
#if MICROPY_HW_XOSC32K
#define MICROPY_PY_MACHINE_RTC (1)
#endif
#endif
// Due to a limitation in the TC counter for us, the ticks period is 2**29
#define MICROPY_PY_UTIME_TICKS_PERIOD (0x20000000)

3
ports/samd/modmachine.c

@ -238,6 +238,9 @@ STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&machine_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&machine_wdt_type) },
#if MICROPY_PY_MACHINE_RTC
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&machine_rtc_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },

3
ports/samd/modmachine.h

@ -38,5 +38,8 @@ extern const mp_obj_type_t machine_spi_type;
extern const mp_obj_type_t machine_timer_type;
extern const mp_obj_type_t machine_uart_type;
extern const mp_obj_type_t machine_wdt_type;
#if MICROPY_PY_MACHINE_RTC
extern const mp_obj_type_t machine_rtc_type;
#endif
#endif // MICROPY_INCLUDED_SAMD_MODMACHINE_H

30
ports/samd/modutime.c

@ -29,20 +29,34 @@
#include "shared/timeutils/timeutils.h"
#include "mphalport.h"
#if !MICROPY_PY_MACHINE_RTC
uint32_t time_offset = 0;
#endif // !MICROPY_PY_MACHINE_RTC
// localtime([secs])
STATIC mp_obj_t time_localtime(size_t n_args, const mp_obj_t *args) {
timeutils_struct_time_t tm;
mp_int_t seconds;
#if MICROPY_PY_MACHINE_RTC
extern void rtc_gettime(timeutils_struct_time_t *tm);
if (n_args == 0 || args[0] == mp_const_none) {
rtc_gettime(&tm);
} else {
seconds = mp_obj_get_int(args[0]);
timeutils_seconds_since_epoch_to_struct_time(seconds, &tm);
}
#else
if (n_args == 0 || args[0] == mp_const_none) {
// seconds = pyb_rtc_get_us_since_epoch() / 1000 / 1000;
seconds = mp_hal_ticks_ms_64() / 1000 + time_offset;
} else {
seconds = mp_obj_get_int(args[0]);
time_offset = seconds - mp_hal_ticks_ms_64() / 1000;
}
timeutils_seconds_since_epoch_to_struct_time(seconds, &tm);
#endif // MICROPY_PY_MACHINE_RTC
mp_obj_t tuple[8] = {
tuple[0] = mp_obj_new_int(tm.tm_year),
tuple[1] = mp_obj_new_int(tm.tm_mon),
@ -50,8 +64,8 @@ STATIC mp_obj_t time_localtime(size_t n_args, const mp_obj_t *args) {
tuple[3] = mp_obj_new_int(tm.tm_hour),
tuple[4] = mp_obj_new_int(tm.tm_min),
tuple[5] = mp_obj_new_int(tm.tm_sec),
tuple[6] = mp_obj_new_int(tm.tm_wday),
tuple[7] = mp_obj_new_int(tm.tm_yday),
tuple[6] = mp_obj_new_int(timeutils_calc_weekday(tm.tm_year, tm.tm_mon, tm.tm_mday)),
tuple[7] = mp_obj_new_int(timeutils_year_day(tm.tm_year, tm.tm_mon, tm.tm_mday)),
};
return mp_obj_new_tuple(8, tuple);
}
@ -76,7 +90,17 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(time_mktime_obj, time_mktime);
// time()
STATIC mp_obj_t time_time(void) {
#if MICROPY_PY_MACHINE_RTC
extern void rtc_gettime(timeutils_struct_time_t *tm);
timeutils_struct_time_t tm;
rtc_gettime(&tm);
return mp_obj_new_int_from_uint(timeutils_mktime(
tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec));
#else
return mp_obj_new_int_from_uint(mp_hal_ticks_ms_64() / 1000 + time_offset);
#endif // MICROPY_PY_MACHINE_RTC
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(time_time_obj, time_time);

7
ports/samd/samd_soc.c

@ -38,6 +38,10 @@
#include "tusb.h"
#include "mphalport.h"
#if MICROPY_PY_MACHINE_RTC
extern void machine_rtc_start(bool force);
#endif
static void usb_init(void) {
// Init USB clock
#if defined(MCU_SAMD21)
@ -114,4 +118,7 @@ void samd_init(void) {
#if defined(MCU_SAMD51)
mp_hal_ticks_cpu_enable();
#endif
#if MICROPY_PY_MACHINE_RTC
machine_rtc_start(false);
#endif
}

Loading…
Cancel
Save