Previous to this patch, all qemu-arm tests were running in the same
session, and global variables could be left over from the previous test.
This patch makes it so that the heap and runtime are reinitialised at
the start of each test.
Calling it from mp_init() is too late for some ports (like Unix), and leads
to incomplete stack frame being captured, with following GC issues. So, now
each port should call mp_stack_ctrl_init() on its own, ASAP after startup,
and taking special precautions so it really was called before stack variables
get allocated (because if such variable with a pointer is missed, it may lead
to over-collecting (typical symptom is segfaulting)).
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
Scenario: module1 depends on some common file from lib/, so specifies it
in its SRC_MOD, and the same situation with module2, then common file
from lib/ eventually ends up listed twice in $(OBJ), which leads to link
errors.
Make is equipped to deal with such situation easily, quoting the manual:
"The value of $^ omits duplicate prerequisites, while $+ retains them and
preserves their order." So, just use $^ consistently in all link targets.
With this patch parse nodes are allocated sequentially in chunks. This
reduces fragmentation of the heap and prevents waste at the end of
individually allocated parse nodes.
Saves roughly 20% of RAM during parse stage.
The do_str() function is provided essentially as documentation to show
how to compile and execute a string. This patch makes do_str take an
extra arg to specify how the string should be interpreted: either as a
single line (ie from a REPL) or as multiple lines (ie from a file).
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
To enable parsing constants more efficiently, mp_parse should be allowed
to raise an exception, and mp_compile can already raise a MemoryError.
So these functions need to be protected by an nlr push/pop block.
This patch adds that feature in all places. This allows to simplify how
mp_parse and mp_compile are called: they now raise an exception if they
have an error and so explicit checking is not needed anymore.
Replaces RUN_TEST=1 definition; now "make test" in qemu-arm directory
will run tests/basics/ and check that they all succeed.
This patch also enables the test on Travis CI.
The function is modeled after traceback.print_exception(), but unbloated,
and put into existing module to save overhead on adding another module.
Compliant traceback.print_exception() is intended to be implemented in
micropython-lib in terms of sys.print_exception().
This change required refactoring mp_obj_print_exception() to take pfenv_t
interface arguments.
Addresses #751.
This makes open() and _io.FileIO() more CPython compliant.
The mode kwarg is fully iplemented.
The encoding kwarg is allowed but not implemented; mainly to allow
the tests to specify encoding for CPython, see #874
mp_parse_node_free now frees the memory associated with non-interned
strings. And the parser calls mp_parse_node_free when discarding a
non-used node (such as a doc string).
Also, the compiler now frees the parse tree explicitly just before it
exits (as opposed to relying on the caller to do this).
Addresses issue #708 as best we can.
Because (for Thumb) a function pointer has the LSB set, pointers to
dynamic functions in RAM (eg native, viper or asm functions) were not
being traced by the GC. This patch is a comprehensive fix for this.
Addresses issue #820.
qstr_init is always called exactly before mp_init, so makes sense to
just have mp_init call it. Similarly with
mp_init_emergency_exception_buf. Doing this makes the ports simpler and
less error prone (ie they can no longer forget to call these).
This is primarily intended to provide testing of Thumb-specific code within
Travis CI as well as if anyone else want to run it locally. As discussed in
purposes. This is currently agains an emulated Cortex-M3 core, however in
the near future it can extended to support M0, M0+ as well M4 (work in
progress exists in sushihangover/qemu).
It's probably true that most of the code base can be covered running uPy
natively on a POSIX system, however we do have the tiny bit of assembly
code. There may exist bugs related to endianness and type aliases, let
alone potential standard library or compiler bugs or even
architecture-specific optimisations.
This could also incorporate lwIP (or other TCP/IP stack) integration as well
as SDIO+FATFS drivers.
The solution to inline the test cases was chose due to simplicity. It could
alternatively be implemented in a number of different way (see #515), but
this looked the simplest.
Inclusion of tinytest was just to avoid writing boilerplate code for
counting failed tests and other utility functions. Currently only a few
functions are used, however this could be extended. Checking in the code
instead of using submodule was a personal preference, but if people do want
the pain of submodules, this can provided. This particular framework is
also pretty good if one desires to run unit test on target. The approach
with scripts being inlined is probably not quite suited for the size of
memory an MCU has, but the tinytest itself should be good, if lower-level C
code is to be unit tested.