These macros could in principle be (inline) functions so it makes sense to
have them lower case, to match the other C API functions.
The remaining macros that are upper case are:
- MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR
- MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE
- MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE
- MP_OBJ_FUN_MAKE_SIG
- MP_DECLARE_CONST_xxx
- MP_DEFINE_CONST_xxx
These must remain macros because they are used when defining const data (at
least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have
MP_OBJ_SMALL_INT_VALUE also a macro).
For those macros that have been made lower case, compatibility macros are
provided for the old names so that users do not need to change their code
immediately.
Before that, the output was truncated to 32 bits. Only "%x" format is
handled, because a typical use is for addresses.
This refactor actually decreased x86_64 code size by 30 bytes.
Printing "(null)" when a NULL string pointer is passed to %s is a debugging
feature and not a feature that's relied upon by the code. So it only needs
to be compiled in when debugging (such as assert) is enabled, and saves
roughy 30 bytes of code when disabled.
This patch also fixes this NULL check to not do the check if the precision
is specified as zero.
Arguments of an unknown type cannot be skipped and continuing to parse a
format string after encountering an unknown format specifier leads to
undefined behaviour. This patch helps to find use of unsupported formats.
This makes all tests pass again for 64bit windows builds which would
previously fail for anything printing ranges (builtin_range/unpack1)
because they were printed as range( ld, ld ).
This is done by reusing the mp_vprintf implementation for MICROPY_OBJ_REPR_D
for 64bit windows builds (both msvc and mingw-w64) since the format specifier
used for 64bit integers is also %lld, or %llu for the unsigned version.
Note these specifiers used to be fetched from inttypes.h, which is the
C99 way of working with printf/scanf in a portable way, but mingw-w64
wants to be backwards compatible with older MS C runtimes and uses
the non-portable %I64i instead of %lld in inttypes.h, so remove the use
of said header again in mpconfig.h and define the specifiers manually.
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
C's printf will pad nan/inf differently to CPython. Our implementation
originally conformed to C, now it conforms to CPython's way.
Tests for this are also added in this patch.
This allows using (almost) the same code for printing floats everywhere,
removes the dependency on sprintf and uses just snprintf and
applies an msvc-specific fix for snprintf in a single place so
nan/inf are now printed correctly.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
stmhal relies on pfenv_* to implement its printf. Thus, it needs a
pfenv_print_int which prints a proper 32-bit integer. With latest
change to pfenv, this function became one that took mp_obj_t, and
extracted the integer value from that object.
To fix temporarily, pfenv_print_int has been renamed to
pfenv_print_mp_int (to indicate it takes a mp_obj_t for the int), and
pfenv_print_int has been added (which takes a normal C int). Currently,
pfenv_print_int proxies to pfenv_print_mp_int, but this means it looses
the MSB. Need to find a way to fix this, but the only way I can think
of will duplicate lots of code.
This adds support for almost everything (the comma isn't currently
supported).
The "unspecified" type with floats also doesn't behave exactly like
python.
Tested under unix with float and double
Spot tested on stmhal