When compiling mpy-cross, there is no `sys` module, and so there will
be no entries in the `mp_builtin_module_delegation_table`.
MSVC doesn't like this, so instead pretend as if the feature isn't
enabled at all.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This replaces the previous QSTR_null entry in the globals dict which could
leak out to Python (e.g. via iteration of mod.__dict__) and could lead to
crashes.
It results in smaller code size at the expense of turning a lookup into a
loop, but the list it is looping over likely only contains one or two
elements.
To allow a module to register its custom attr function it can use the new
`MP_REGISTER_MODULE_DELEGATION` macro.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
In order to keep "import umodule" working, the existing mechanism is
replaced with a simple fallback to drop the "u".
This makes importing of built-ins no longer touch the filesystem, which
makes a typical built-in import take ~0.15ms rather than 3-5ms.
(Weak links were added in c14a81662c)
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This can lead to duplicate initialisations if a module can be imported
via multiple names, so the module must track this itself anyway.
This reduces code size (diff is -40 bytes), and avoids special treatment of
builtin-modules-with-init with respect to sys.modules. No other builtin
modules get put into sys.modules.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This makes it so that sub-packages are resolved relative to their parent's
`__path__`, rather than re-resolving each parent's filesystem path.
The previous behavior was that `import foo.bar` would first re-search
`sys.path` for `foo`, then use the resulting path to find `bar`.
For already-loaded and u-prefixed modules, because we no longer need to
build the path from level to level, we no longer unnecessarily search
the filesystem. This should improve startup time.
Explicitly makes the resolving process clear:
- Loaded modules are returned immediately without touching the filesystem.
- Exact-match of builtins are also returned immediately.
- Then the filesystem search happens.
- If that fails, then the weak-link handling is applied.
This maintains the existing behavior: if a user writes `import time` they
will get time.py if it exits, otherwise the built-in utime. Whereas `import
utime` will always return the built-in.
This also fixes a regression from a7fa18c203
where we search the filesystem for built-ins. It is now only possible to
override u-prefixed builtins. This will remove a lot of filesystem stats
at startup, as micropython-specific modules (e.g. `pyb`) will no longer
attempt to look at the filesystem.
Added several improvements to the comments and some minor renaming and
refactoring to make it clearer how the import mechanism works. Overall
code size diff is +56 bytes on STM32.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This matches class `__dict__`, and is similarly gated on
MICROPY_CPYTHON_COMPAT. Unlike class though, because modules's globals are
actually dict instances, the result is a mutable dictionary.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This cleans up the parsing of MP_REGISTER_MODULE() and generation of
genhdr/moduledefs.h so that it uses the same process as compressed error
string messages, using the output of qstr extraction.
This makes sure all MP_REGISTER_MODULE()'s that are part of the build are
correctly picked up. Previously the extraction would miss some (eg if you
had a mod.c file in the board directory for an stm32 board).
Build speed is more or less unchanged.
Thanks to @stinos for the ports/windows/msvc/genhdr.targets changes.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds generic support for mutable module attributes on built in
modules, by adding support for an optional hook function for module
attribute lookup. If a module wants to support additional attribute load/
store/delete (beyond what is in the constant, globals dict) then it should
add at the very end of its globals dict MP_MODULE_ATTR_DELEGATION_ENTRY().
This should point to a custom function which will handle any additional
attributes.
The mp_module_generic_attr() function is provided as a helper function for
additional attributes: it requires an array of qstrs (terminated in
MP_QSTRnull) and a corresponding array of objects (with a 1-1 mapping
between qstrs and objects). If the qstr is found in the array then the
corresponding object is loaded/stored/deleted.
Signed-off-by: Damien George <damien@micropython.org>
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing. They are also
smaller on disk.
But the real benefit of .mpy files comes when they are frozen into the
firmware. This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device. These C data structures can be executed in-place, ie directly from
ROM. This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).
The downside of frozen code is that it requires recompiling and reflashing
the entire firmware. This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).
This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware. The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place. If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.
With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).
The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded. Instead only a small qstr table needs to be built (and put in RAM)
at import time. This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory. Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).
In more detail, in the VM what used to be (schematically):
qst = DECODE_QSTR_VALUE;
is now (schematically):
idx = DECODE_QSTR_INDEX;
qst = qstr_table[idx];
That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values. Only qstr_table needs to be linked
when the .mpy is loaded.
Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.
The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before
The qstr indirection in the bytecode has only a small impact on VM
performance. For stm32 on PYBv1.0 the performance change of this commit
is:
diff of scores (higher is better)
N=100 M=100 baseline -> this-commit diff diff% (error%)
bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%)
bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%)
bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%)
bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%)
bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%)
bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%)
bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%)
core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%)
core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%)
core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%)
core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%)
misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%)
misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%)
misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%)
misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%)
viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%)
viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%)
viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%)
viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%)
viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%)
viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%)
And for unix on x64:
diff of scores (higher is better)
N=2000 M=2000 baseline -> this-commit diff diff% (error%)
bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%)
bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%)
bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%)
bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%)
bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%)
bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%)
bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%)
misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%)
misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%)
misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%)
misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%)
The code size change is (firmware with a lot of frozen code benefits the
most):
bare-arm: +396 +0.697%
minimal x86: +1595 +0.979% [incl +32(data)]
unix x64: +2408 +0.470% [incl +800(data)]
unix nanbox: +1396 +0.309% [incl -96(data)]
stm32: -1256 -0.318% PYBV10
cc3200: +288 +0.157%
esp8266: -260 -0.037% GENERIC
esp32: -216 -0.014% GENERIC[incl -1072(data)]
nrf: +116 +0.067% pca10040
rp2: -664 -0.135% PICO
samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS
As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.
In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place. Performance is not impacted too much. Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM. This will
essentially be able to replace frozen code for most applications.
Signed-off-by: Damien George <damien@micropython.org>
The inclusion of `umachine` in the list of built-in modules is now done
centrally in py/objmodule.c. Enabling MICROPY_PY_MACHINE will include this
module.
As part of this, all ports now have `umachine` as the core module name
(previously some had only `machine` as the name).
Signed-off-by: Damien George <damien@micropython.org>
This is consistent with the other 'micro' modules and allows implementing
additional features in Python via e.g. micropython-lib's sys.
Note this is a breaking change (not backwards compatible) for ports which
do not enable weak links, as "import sys" must now be replaced with
"import usys".
Implements Task and TaskQueue classes in C, using a pairing-heap data
structure. Using this reduces RAM use of each Task, and improves overall
performance of the uasyncio scheduler.
For consistency with "umachine". Now that weak links are enabled
by default for built-in modules, this should be a no-op, but allows
extension of the bluetooth module by user code.
Also move registration of ubluetooth to objmodule rather than
port-specific.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
This system makes it a lot easier to include external libraries as static,
native modules in MicroPython. Simply pass USER_C_MODULES (like
FROZEN_MPY_DIR) as a make parameter.
During make, makemoduledefs.py parses the current builds c files for
MP_REGISTER_MODULE(module_name, obj_module, enabled_define)
These are used to generate a header with the required entries for
"mp_rom_map_elem_t mp_builtin_module_table[]" in py/objmodule.c
As mentioned in #4450, `websocket` was experimental with a single intended
user, `webrepl`. Therefore, we'll make this change without a weak
link `websocket` -> `uwebsocket`.
Configurable via MICROPY_MODULE_GETATTR, disabled by default. Among other
things __getattr__ for modules can help to build lazy loading / code
unloading at runtime.
Because this function is simple it saves code size to have it inlined.
Being an auxiliary helper function (and only used in the py/ core) the
argument should always be an mp_obj_module_t*, so there's no need for the
assert (and having it would require including assert.h in obj.h).
The API follows guidelines of https://www.python.org/dev/peps/pep-0272/,
but is optimized for code size, with the idea that full PEP 0272
compatibility can be added with a simple Python wrapper mode.
The naming of the module follows (u)hashlib pattern.
At the bare minimum, this module is expected to provide:
* AES128, ECB (i.e. "null") mode, encrypt only
Implementation in this commit is based on axTLS routines, and implements
following:
* AES 128 and 256
* ECB and CBC modes
* encrypt and decrypt
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
They are one-line functions and having them inline in mp_init/mp_deinit
eliminates the overhead of a function call, and matches how other state
is initialised in mp_init.
import utimeq, utime
# Max queue size, the queue allocated statically on creation
q = utimeq.utimeq(10)
q.push(utime.ticks_ms(), data1, data2)
res = [0, 0, 0]
# Items in res are filled up with results
q.pop(res)
While just a websocket is enough for handling terminal part of WebREPL,
handling file transfer operations requires demultiplexing and acting
upon, which is encapsulated in _webrepl class provided by this module,
which wraps a websocket object.