Its addition was due to an early exploration on how to add CPython-like
stream interface. It's clear that it's not needed and just takes up
bytes in all ports.
As required for further elaboration of uasyncio, like supporting baremetal
systems with wraparound timesources. This is not intended to be public
interface, and likely will be further refactored in the future.
If an I2C send/recv fails then the peripheral is now checked to see if
it's in a "stuck" state waiting for the stop bit, and if so then it is
reset so that the next I2C transaction can proceed.
This patch also de-inits the I2C peripheral in the init() method, before
init'ing it again.
New keyword option in constructor and init() method is "dma=<bool>".
DMA is now disabled by default for I2C transfers because it currently does
not handle I2C bus errors very well (eg if slave device doesn't ACK or
NACK correctly during a transfer).
The DMA state is always HAL_DMA_STATE_RESET because of the memset clearing
all the data, so prior to this patch HAL_DMA_DeInit was never called. Now
it is always called to make sure the DMA is properly reset.
The ESP SDK supports configuring the hostname that is
reported when doing a DHCP request in station mode. This commit
exposes that under network.WLAN(network.STA_IF).config('dhcp_hostname')
as a read/write value similar to other parameters.
With this patch one can now do "make FROZEN_MPY_DIR=../../frozen" to
specify a directory containing scripts to be frozen (as well as absolute
paths).
The compiled .mpy files are now stored in $(BUILD)/frozen_mpy/.
Now, to use frozen bytecode all a port needs to do is define
FROZEN_MPY_DIR to the directory containing the .py files to freeze, and
define MICROPY_MODULE_FROZEN_MPY and MICROPY_QSTR_EXTRA_POOL.
Previously, it was included only in release builds, but it's important
tool which should be always at the fingertips to be useful (and to
pump up its usage).
To make its inclusion as frozen modules in multiple ports less magic.
Ports are just expected to symlink 2 files into their scripts/modules
subdirs.
Unix port updated to use this and in general follow frozen modules setup
tested and tried on baremetal ports, where there's "scripts" predefined
dir (overridable with FROZEN_DIR make var), and a user just drops Python
files there.
At the WS2812 driver level, a 400ns value was used for T0H (time high to
send a 0 bit) but LED specification says it should be 350ns +- 150ns.
Due to loop overhead the 400ns value could lead to T0H close to 500ns
which is too close from the limit value and gave glitches (bad data to
pixels) in some cases. This patch makes the calculated T0H value 350ns.
Previously they used historical "pyb" affix causing confusion and
inconsistency (there's no "pyb" module in modern ports; but people
took esp8266 port as an example, and "pyb" naming kept proliferating,
while other people complained that source structure is not clear).
This helps to test floating point code on Cortex-M hardware.
As part of this patch the link-time-optimisation was disabled because it
wasn't compatible with software FP support. In particular, the linker
could not find the __aeabi_f2d, __aeabi_d2f etc functions even though they
were provided by lib/libm/math.c.
In both parse.c and qstr.c, an internal chunking allocator tidies up
by calling m_renew to shrink an allocated chunk to the size used, and
assumes that the chunk will not move. However, when MICROPY_ENABLE_GC
is false, m_renew calls the system realloc, which does not guarantee
this behaviour. Environments where realloc may return a different
pointer include:
(1) mbed-os with MBED_HEAP_STATS_ENABLED (which adds a wrapper around
malloc & friends; this is where I was hit by the bug);
(2) valgrind on linux (how I diagnosed it).
The fix is to call m_renew_maybe with allow_move=false.
Size 64 was incorrect and will lead to stack corruption. Size 88 was
verified empirically. Also, allow to skip defining it if MD5_CTX
preprocessor macro is already defined (to avoid header conflict).