With inplace methods now disabled by default, it makes sense to enable
reverse methods, as they allow for more useful features, e.g. allow
for datetime module to implement both 2 * HOUR and HOUR * 2 (where
HOUR is e.g. timedelta object).
This allows to configure support for inplace special methods separately,
similar to "normal" and reverse special methods. This is useful, because
inplace methods are "the most optional" ones, for example, if inplace
methods aren't defined, the operation will be executed using normal
methods instead.
As a caveat, __iadd__ and __isub__ are implemented even if
MICROPY_PY_ALL_INPLACE_SPECIAL_METHODS isn't defined. This is similar
to the state of affairs before binary operations refactor, and allows
to run existing tests even if MICROPY_PY_ALL_INPLACE_SPECIAL_METHODS
isn't defined.
If MICROPY_PY_ALL_SPECIAL_METHODS is defined, actually define all special
methods (still subject to gating by e.g. MICROPY_PY_REVERSE_SPECIAL_METHODS).
This adds quite a number of qstr's, so should be used sparingly.
VLAs can be expensive on stack usage due to stack alignment requirements,
and also the fact that extra local variables are needed to track the
dynamic size of the stack. So using fixed-size arrays when possible can
help to reduce code size and stack usage.
In this particular case, the maximum value of n_args in the VLA is 2 and so
it's more efficient to just allocate this array with a fixed size. This
reduces code size by around 30 bytes on Thumb2 and Xtensa archs. It also
reduces total stack usage of the function: on Thumb2 the usage with VLA is
between 40 and 48 bytes, which is reduced to 32; on Xtensa, VLA usage is
between 64 and 80 bytes, reduced to 32; on x86-64 it's at least 88 bytes
reduced to 80.
CPython only supports the server_hostname keyword arg via the SSLContext
object, so use that instead of the top-level ssl.wrap_socket. This allows
the test to run on CPython the same as uPy.
Also add the "Host:" header to correctly make a GET request (for URLs that
are hosted on other servers). This is not strictly needed to test the SSL
connection but helps to debug things when printing the response.
Unix naming is historical, before current conventions were established.
All other ports however have it as "modusocket.c", so rename for
consistency and to avoid confusion.
Update makeqstrdata.py to sort strings starting with "__" to the beginning
of qstr list, so they get low qstr id's, guaranteedly fitting in 8 bits.
Then use this property to further compact op_id => qstr mapping arrays.
Per https://docs.python.org/3/library/sys.html#sys.getsizeof:
getsizeof() calls the object’s __sizeof__ method. Previously, "getsizeof"
was used mostly to save on new qstr, as we don't really support calling
this method on arbitrary objects (so it was used only for reporting).
However, normalize it all now.
Not all compilers/analysers are smart enough to realise that this function
is never called if MICROPY_ERROR_REPORTING is not TERSE, because the logic
in the code uses if statements rather than #if to select whether to call
this function or not (MSC in debug mode is an example of this, but there
are others). So just unconditionally compile this helper function. The
code-base anyway relies on the linker to remove unused functions.
The legacy function pyb.repl_uart() is still provided and retains its
original behaviour (it only accepts a UART object). uos.dupterm() will now
accept any object with write/readinto methods. At the moment there is just
1 dupterm slot.
Without this the board will crash when deactivating a stream that doesn't
have a close() method (eg UART) or that raises an exception within the
method (eg user-defined function).
The W5200 and W5500 can support up to 80MHz so 42MHz (the maximum the
pyboard can do in its standard configuration) should be safe.
Tested to give around 1050000 kbytes/sec TCP download speed on a W5500,
which is about 10% more than with the previous SPI speed of 21MHz.
Which Wiznet chip to use is a compile-time option: MICROPY_PY_WIZNET5K
should be set to either 5200 or 5500 to support either one of these
Ethernet chips. The driver is called network.WIZNET5K in both cases.
Note that this commit introduces a breaking-change at the build level
because previously the valid values for MICROPY_PY_WIZNET5K were 0 and 1
but now they are 0, 5200 and 5500.
This patch implements the basic SPI read/write functions for the W5500
chip. It also allows _WIZCHIP_ to be configured externally to select the
specific Wiznet chip.
The uos.dupterm() signature and behaviour is updated to reflect the latest
enhancements in the docs. It has minor backwards incompatibility in that
it no longer accepts zero arguments.
The dupterm_rx helper function is moved from esp8266 to extmod and
generalised to support multiple dupterm slots.
A port can specify multiple slots by defining the MICROPY_PY_OS_DUPTERM
config macro to an integer, being the number of slots it wants to have;
0 means to disable the dupterm feature altogether.
The unix and esp8266 ports are updated to work with the new interface and
are otherwise unchanged with respect to functionality.
So that a pointer to it can be passed as a pointer to math_generic_1. This
patch also makes the function work for single and double precision floating
point.
This patch changes how most of the plain math functions are implemented:
there are now two generic math wrapper functions that take a pointer to a
math function (like sin, cos) and perform the necessary conversion to and
from MicroPython types. This helps to reduce code size. The generic
functions can also check for math domain errors in a generic way, by
testing if the result is NaN or infinity combined with finite inputs.
The result is that, with this patch, all math functions now have full
domain error checking (even gamma and lgamma) and code size has decreased
for most ports. Code size changes in bytes for those with the math module
are:
unix x64: -432
unix nanbox: -792
stm32: -88
esp8266: +12
Tests are also added to check domain errors are handled correctly.