In MicroPython, the path separator is guaranteed to be "/", extra unneeded
things take precious code space (in the port which doesn't have basic things
like floating-port support).
socket.timeout is a subclass of OSError, and using the latter is more
efficient than having a dedicated class. The argument of OSError is
ETIMEDOUT so the error can be distinguished from other kinds of
OSErrors. This follows how the esp8266 port does it.
Since we recently replaced the OSError string messages with simple error
codes, having the uerrno module gets back some user friendly error
messages. The total code size (after removing strings, replacing with
uerrno module) is decreased.
ftp.c is the only user of this function so making it static in that file
allows it to be inlined. Also, reusing unichar_toupper means we no longer
depend on the C stdlib for toupper, saving about 300 bytes of code space.
Allows to iterate over the following without allocating on the heap:
- tuple
- list
- string, bytes
- bytearray, array
- dict (not dict.keys, dict.values, dict.items)
- set, frozenset
Allows to call the following without heap memory:
- all, any, min, max, sum
TODO: still need to allocate stack memory in bytecode for iter_buf.
The port now uses the common mp_utime_ticks_{ms,us,cpu,add,diff} functions
from extmod/utime_mphal.c.
The mp_utime_sleep_XXX functions are still cc3200-specific because they
handle the GIL differently to the ones in extmod.
The files misc/mpsystick.[ch] have been removed because they contain 2
unused functions, and the other remaining function is renamed to
mp_hal_ticks_us and moved to hal/cc3200_hal.c.
cc3200tool, https://github.com/ALLTERCO/cc3200tool is a (mostly, some
binary blobs present) open-source, Linux-friendly tool to flash a cc3200
devices. It's an alternative to fully proprietary, Windows-only Uniflash
from TI.
The provided make targets are for erasing flash, flashing the uPy
bootloader and firmware, and flashing vendor's WiFi firmware "servicepacks"
(the latter needs to be downloaded from vendor side, a link is present
inside Makefile).
UART REPL support was lost in os.dupterm() refactorings, etc. As
os.dupterm() is there, implement UART REPL support at the high level -
if MICROPY_STDIO_UART is set, make default boot.py contain os.dupterm()
call for a UART. This means that changing MICROPY_STDIO_UART value will
also require erasing flash on a module to force boot.py re-creation.
The constants MP_IOCTL_POLL_xxx, which were stmhal-specific, are moved
from stmhal/pybioctl.h (now deleted) to py/stream.h. And they are renamed
to MP_STREAM_POLL_xxx to be consistent with other such constants.
All uses of these constants have been updated.
If a port defines MICROPY_READER_POSIX or MICROPY_READER_FATFS then
lexer.c now provides an implementation of mp_lexer_new_from_file using
the mp_reader_new_file function.
Implementations of persistent-code reader are provided for POSIX systems
and systems using FatFS. Macros to use these are MICROPY_READER_POSIX and
MICROPY_READER_FATFS respectively. If an alternative implementation is
needed then a port can define the function mp_reader_new_file.
Per the latest HW API, "SPI" class implements only master side of the
protocol, so mode=SPI.MASTER (which was static for WiPy anyway) is not
required (or allowed). This change is required to correspond to updated
documentation of machine.SPI class which no longer lists "mode".
Its addition was due to an early exploration on how to add CPython-like
stream interface. It's clear that it's not needed and just takes up
bytes in all ports.
In order to have more fine-grained control over how builtin functions are
constructed, the MP_DECLARE_CONST_FUN_OBJ macros are made more specific,
with suffix of _0, _1, _2, _3, _VAR, _VAR_BETEEN or _KW. These names now
match the MP_DEFINE_CONST_FUN_OBJ macros.
Running Python code on a hard interrupt is incompatible with having a GIL,
because most of the time the GIL will be held by the user thread when the
interrupt arrives. Hard interrupts mean that we should process them right
away and hence can't wait until the GIL is released.
The problem with the current code is that a hard interrupt will try to
exit/enter the GIL while it is still held by the user thread, hence leading
to a deadlock.
This patch works around such a problem by just making GIL exit/enter a
no-op when in an interrupt context, or when interrupts are disabled.
See issue #2406.