Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
The code conventions suggest using header guards, but do not define how
those should look like and instead point to existing files. However, not
all existing files follow the same scheme, sometimes omitting header guards
altogether, sometimes using non-standard names, making it easy to
accidentally pick a "wrong" example.
This commit ensures that all header files of the MicroPython project (that
were not simply copied from somewhere else) follow the same pattern, that
was already present in the majority of files, especially in the py folder.
The rules are as follows.
Naming convention:
* start with the words MICROPY_INCLUDED
* contain the full path to the file
* replace special characters with _
In addition, there are no empty lines before #ifndef, between #ifndef and
one empty line before #endif. #endif is followed by a comment containing
the name of the guard macro.
py/grammar.h cannot use header guards by design, since it has to be
included multiple times in a single C file. Several other files also do not
need header guards as they are only used internally and guaranteed to be
included only once:
* MICROPY_MPHALPORT_H
* mpconfigboard.h
* mpconfigport.h
* mpthreadport.h
* pin_defs_*.h
* qstrdefs*.h
Taking the address of a local variable leads to increased stack usage, so
the mp_decode_uint_skip() function is added to reduce the need for taking
addresses. The changes in this patch reduce stack usage of a Python call
by 8 bytes on ARM Thumb, by 16 bytes on non-windowing Xtensa archs, and by
16 bytes on x86-64. Code size is also slightly reduced on most archs by
around 32 bytes.
Instead of caching data that is constant (code_info, const_table and
n_state), store just a pointer to the underlying function object from which
this data can be derived.
This helps reduce stack usage for the case when the mp_code_state_t
structure is stored on the stack, as well as heap usage when it's stored
on the heap.
The downside is that the VM becomes a little more complex because it now
needs to derive the data from the underlying function object. But this
doesn't impact the performance by much (if at all) because most of the
decoding of data is done outside the main opcode loop. Measurements using
pystone show that little to no performance is lost.
This patch also fixes a nasty bug whereby the bytecode can be reclaimed by
the GC during execution. With this patch there is always a pointer to the
function object held by the VM during execution, since it's stored in the
mp_code_state_t structure.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
This optimisation reduces the VM exception stack element (mp_exc_stack_t)
by 1 word, by using bit 1 of a pointer to store whether the opcode was a
FINALLY or WITH opcode. This optimisation was pending, waiting for
maturity of the exception handling code, which has now proven itself.
Saves 1 machine word RAM for each exception (4->3 words per exception).
Increases stmhal code by 4 bytes, and decreases unix x64 code by 32
bytes.
This saves a lot of RAM for 2 reasons:
1. For functions that don't have default values, var args or var kw
args (which is a large number of functions in the general case), the
mp_obj_fun_bc_t type now fits in 1 GC block (previously needed 2 because
of the extra pointer to point to the arg_names array). So this saves 16
bytes per function (32 bytes on 64-bit machines).
2. Combining separate memory regions generally saves RAM because the
unused bytes at the end of the GC block are saved for 1 of the blocks
(since that block doesn't exist on its own anymore). So generally this
saves 8 bytes per function.
Tested by importing lots of modules:
- 64-bit Linux gave about an 8% RAM saving for 86k of used RAM.
- pyboard gave about a 6% RAM saving for 31k of used RAM.
Code-info size, block name, source name, n_state and n_exc_stack now use
variable length encoded uints. This saves 7-9 bytes per bytecode
function for most functions.
Because (for Thumb) a function pointer has the LSB set, pointers to
dynamic functions in RAM (eg native, viper or asm functions) were not
being traced by the GC. This patch is a comprehensive fix for this.
Addresses issue #820.
This improves stack usage in callers to mp_execute_bytecode2, and is step
forward towards unifying execution interface for function and generators
(which is important because generators don't even support full forms
of arguments passing (keywords, etc.)).
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
Required to reraise correct exceptions in except block, regardless if more
try blocks with active exceptions happen in the same except block.
P.S. This "automagic reraise" appears to be quite wasteful feature of Python
- we need to save pending exception just in case it *might* be reraised.
Instead, programmer could explcitly capture exception to a variable using
"except ... as var", and reraise that. So, consider disabling argless raise
support as an optimization.
Rationale: setting up the stack (state for locals and exceptions) is
really part of the "code", it's the prelude of the function. For
example, native code adjusts the stack pointer on entry to the function.
Native code doesn't need to know n_state for any other reason. So
putting the state size in the bytecode prelude is sensible.
It reduced ROM usage on STM by about 30 bytes :) And makes it easier to
pass information about the bytecode between functions.
A big change. Micro Python objects are allocated as individual structs
with the first element being a pointer to the type information (which
is itself an object). This scheme follows CPython. Much more flexible,
not necessarily slower, uses same heap memory, and can allocate objects
statically.
Also change name prefix, from py_ to mp_ (mp for Micro Python).