This introduces a new macro to get the main thread and uses it to ensure
that asynchronous exceptions such as KeyboardInterrupt (CTRL+C) are only
scheduled on the main thread. This is more deterministic than being
scheduled on a random thread and is more in line with CPython that only
allow signal handlers to run on the main thread.
Fixes issue #7026.
Signed-off-by: David Lechner <david@pybricks.com>
This moves mp_pending_exception from mp_state_vm_t to mp_state_thread_t.
This allows exceptions to be scheduled on a specific thread.
Signed-off-by: David Lechner <david@pybricks.com>
For a given IRQn (eg UART) there's no need to carry around both a PRI and
SUBPRI value (eg IRQ_PRI_UART, IRQ_SUBPRI_UART). Instead, the IRQ_PRI_UART
value has been changed in this patch to be the encoded hardware value,
using NVIC_EncodePriority. This way the NVIC_SetPriority function can be
used directly, instead of going through HAL_NVIC_SetPriority which must do
extra processing to encode the PRI+SUBPRI.
For a priority grouping of 4 (4 bits for preempt priority, 0 bits for the
sub-priority), which is used in the stm32 port, the IRQ_PRI_xxx constants
remain unchanged in their value.
This patch also "fixes" the use of raise_irq_pri() which should be passed
the encoded value (but as mentioned above the unencoded value is the same
as the encoded value for priority grouping 4, so there was no bug from this
error).
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
This is to keep the top-level directory clean, to make it clear what is
core and what is a port, and to allow the repository to grow with new ports
in a sustainable way.
We can actually handle interrupts during a thread switch (because we always
have a valid stack), but only if those interrupts don't access any of the
thread state (because the state may not correspond to the stack pointer).
So to be on the safe side we disable interrupts during the very short
period of the thread state+stack switch.
This patch brings the _thread module to stmhal/pyboard. There is a very
simple round-robin thread scheduler, which is disabled if there is only
one thread (for efficiency when threading is not used).
The scheduler currently switches threads at a rate of 250Hz using the
systick timer and the pend-SV interrupt.
The GIL is disabled so one must be careful to use lock objects to prevent
concurrent access of objects.
The threading is disabled by default, one can enabled it with the config
option MICROPY_PY_THREAD to test it out.
mp_kbd_exception is now considered the standard variable name to hold the
singleton KeyboardInterrupt exception.
This patch also moves the creation of this object from pyb_usb_init() to
main().
This patch consolidates all global variables in py/ core into one place,
in a global structure. Root pointers are all located together to make
GC tracing easier and more efficient.
This allows to implement KeyboardInterrupt on unix, and a much safer
ctrl-C in stmhal port. First ctrl-C is a soft one, with hope that VM
will notice it; second ctrl-C is a hard one that kills anything (for
both unix and stmhal).
One needs to check for a pending exception in the VM only for jump
opcodes. Others can't produce an infinite loop (infinite recursion is
caught by stack check).
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
Using PendSV interrupt at lowest priority, code can now raise an
exception during an interrupt by calling pendsv_nlr_jump. The exception
will be raised when all interrupts are finished. This is used to trap
ctrl-C from the USB VCP to break out of running Python code.