- add template rule that converts a specified source file into a qstring file
- add special rule for generating a central header that contains all
extracted/autogenerated strings - defined by QSTR_DEFS_COLLECTED
variable. Each platform appends a list of sources that may contain
qstrings into a new build variable: SRC_QSTR. Any autogenerated
prerequisities are should be appened to SRC_QSTR_AUTO_DEPS variable.
- remove most qstrings from py/qstrdefs, keep only qstrings that
contain special characters - these cannot be easily detected in the
sources without additional annotations
- remove most manual qstrdefs, use qstrdef autogen for: py, cc3200,
stmhal, teensy, unix, windows, pic16bit:
- remove all micropython generic qstrdefs except for the special strings that contain special characters (e.g. /,+,<,> etc.)
- remove all port specific qstrdefs except for special strings
- append sources for qstr generation in platform makefiles (SRC_QSTR)
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
Scenario: module1 depends on some common file from lib/, so specifies it
in its SRC_MOD, and the same situation with module2, then common file
from lib/ eventually ends up listed twice in $(OBJ), which leads to link
errors.
Make is equipped to deal with such situation easily, quoting the manual:
"The value of $^ omits duplicate prerequisites, while $+ retains them and
preserves their order." So, just use $^ consistently in all link targets.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
Reference MCU is dsPIC33J256GP506 with 256k ROM and 8k RAM, on the dsPIC
DSC Starter Kit board. The REPL works, GC works, pyb module has LED and
Switch objects. It passes some tests from the test suite (most it can't
run because it doesn't have the Python features enabled).