This patch forces a board to explicitly define TEXT1_ADDR in order to
split the firmware into two separate pieces. Otherwise the default is now
to produce only a single continuous firmware image with all ISR, text and
data together.
This patch allows a particular board to independently specify the linker
scripts for 1) the MCU memory layout; 2) how the different firmware
sections are arranged in memory. Right now all boards follow the same
layout with two separate firmware section, one for the ISR and one for the
text and data. This leaves room for storage (filesystem data) to live
between the firmware sections.
The idea with this patch is to accommodate boards that don't have internal
flash storage and only need to have one continuous firmware section. Thus
the common.ld script is renamed to common_ifs.ld to make explicit that it
is used for cases where the board has internal flash storage.
Explicitly writing out the implementation of sys_tick_has_passed makes
these bdev files independent of systick.c and more reusable as a general
component. It also reduces the code size slightly.
The irq.h header is added to spibdev.c because it uses declarations in that
file (irq.h is usually included implicitly via mphalport.h but not always).
Taking the address assumes that the pin is an object (eg a struct), but it
could be a literal (eg an int). Not taking the address makes this driver
more general for other uses.
genhdr/pins.h is an internal header file that defines all of the pin
objects and it's cleaner to have pin.h include it (where the struct's for
these objects are defined) rather than an explicit include by every user.
The HAL requires strict aliasing optimisation to be turned on to function
correctly (at least for the SD card driver on F4 MCUs). This optimisation
was recently disabled with the addition of H7 support due to the H7 HAL
having errors with the strict aliasing optimisation enabled. But this is
now fixed in the latest stm32lib and so the optimisation can now be
re-enabled.
Thanks to @chuckbook for finding that there was a problem with the SD card
on F4 MCUs with the strict aliasing optimisation disabled.
The CMSIS files for the STM32 range provide macros to distinguish between
the different MCU series: STM32F4, STM32F7, STM32H7, STM32L4, etc. Prefer
to use these instead of custom ones.
This patch provides a custom (and simple) function to receive data on the
CAN bus, instead of the HAL function. This custom version calls
mp_handle_pending() while waiting for messages, which, among other things,
allows to interrupt the recv() method via KeyboardInterrupt.
Certain pins (eg 4 and 5) seem to behave differently at the hardware level
when in open-drain mode: they glitch when set "high" and drive the pin
active high for a brief period before disabling the output driver. To work
around this make the pin an input to let it float high.
This config variable controls whether to support storage on the internal
flash of the MCU. It is enabled by default and should be explicitly
disabled by boards that don't want internal flash storage.
It makes it cleaner, and simpler to support multiple different block
devices. It also allows to easily extend a given block device with new
ioctl operations.
This patch alters the SPI-flash memory driver so that it uses the new
low-level C SPI protocol (from drivers/bus/spi.h) instead of the uPy SPI
protocol (from extmod/machine_spi.h). This allows the SPI-flash driver to
be used independently from the uPy runtime.
This patch takes the software SPI implementation from extmod/machine_spi.c
and moves it to a dedicated file in drivers/bus/softspi.c. This allows the
SPI driver to be used independently of the uPy runtime, making it a more
general component.