- Updated supported git hash to current IDF version.
- Added missing targets and includes to Makefile.
- Updated error codes for networking module.
- Added required constant to sdkconfig configuration.
This patch moves the start of the root pointer section in mp_state_ctx_t
so that it skips entries that are not pointers and don't need scanning.
Previously, the start of the root pointer section was at the very beginning
of the mp_state_ctx_t struct (which is the beginning of mp_state_thread_t).
This was the original assembler version of the NLR code was hard-coded to
have the nlr_top pointer at the start of this state structure. But now
that the NLR code is partially written in C there is no longer this
restriction on the location of nlr_top (and a comment to this effect has
been removed in this patch).
So now the root pointer section starts part way through the
mp_state_thread_t structure, after the entries which are not root pointers.
This patch also moves the non-pointer entries for MICROPY_ENABLE_SCHEDULER
outside the root pointer section.
Moving non-pointer entries out of the root pointer section helps to make
the GC more precise and should help to prevent some cases of collectable
garbage being kept.
This patch also has a measurable improvement in performance of the
pystone.py benchmark: on unix x86-64 and stm32 there was an improvement of
roughly 0.6% (tested with both gcc 7.3 and gcc 8.1).
This patch changes 2 things in the endianness detection:
1. Don't assume that __BYTE_ORDER__ not being __ORDER_LITTLE_ENDIAN__ means
that the machine is big endian, so add an explicit check that this macro
is indeed __ORDER_BIG_ENDIAN__ (same with __BYTE_ORDER, __LITTLE_ENDIAN
and __BIG_ENDIAN). A machine could have PDP endianness.
2. Remove the checks which base their autodetection decision on whether any
little or big endian macros are defined (eg __LITTLE_ENDIAN__ or
__BIG_ENDIAN__). Just because a system defines these does not mean it
has that endianness.
See issue #3760.
Printing of uPy floats can differ by the floating-point precision on
different architectures (eg 64-bit vs 32-bit x86), so it's not possible to
using printing of floats in some parts of this test. Instead we can just
check for equivalence with what is known to be the correct answer.
For cases where size_t is smaller than mp_int_t (eg nan-boxing builds) the
difference between two size_t's is not sign extended into mp_int_t and so
the result is never negative. This patch fixes this bug by using ssize_t
for the type of the result.
This gives dir() better behaviour when listing the attributes of a user
type that defines __getattr__: it will now not list those attributes for
which __getattr__ raises AttributeError (meaning the attribute is not
supported by the object).
This patch fixes the possibility of a crash of the REPL when tab-completing
an object which raises an exception when its attributes are accessed.
See issue #3729.
This new helper function acts like mp_load_method_maybe but is wrapped in
an NLR handler so it can catch exceptions. It prevents AttributeError from
propagating out, and optionally all other exceptions. This helper can be
used to fully implement hasattr (see follow-up commit), and also for cases
where mp_load_method_maybe is used but it must now raise an exception.
Commit e269cabe3e added a check that the
first argument to the to_bytes() method is an integer, and now uPy
follows CPython behaviour and raises a TypeError for this test.
Note: CPython checks the argument types before checking the number of
arguments, but uPy does it the other way around, so they give different
exception messages for this test, but still the same type, a TypeError.
On this 32-bit arch there's no need to use the long version of the format
specifier. It's only there to appease the compiler which checks the type
of the args passed to printf. Removing the "l" saves a bit of code space.
The order of function calls in an arithmetic expression is undefined and so
they must be written out as sequential statements.
Thanks to @dv-extrarius for reporting this issue, see issue #3690.
If a socket is cleanly shut down by the peer then reads on this socket
should continue to return zero bytes. The lwIP socket API does not have
this behaviour (it only returns zero once, then blocks on subsequent calls)
so this patch adds explicit checks and logic for peer closed sockets.
Add --init to the submodule update example, thus, all submodules get
initialised including the nested (--recursive) ones. Without it there
might not be a submodule init.
Disabling this saves around 6000 bytes of code space and gets the 512k
build fitting in the available flash again (it increased lately due to an
increase in the size of the ESP8266 SDK).
In adcall.py the pyb module may not be imported, so use ADCAll directly.
In dac.py the DAC object now prints more info, so update .exp file.
In spi.py the SPI should be deinitialised upon exit, so the test can run a
second time correctly.
For a given IRQn (eg UART) there's no need to carry around both a PRI and
SUBPRI value (eg IRQ_PRI_UART, IRQ_SUBPRI_UART). Instead, the IRQ_PRI_UART
value has been changed in this patch to be the encoded hardware value,
using NVIC_EncodePriority. This way the NVIC_SetPriority function can be
used directly, instead of going through HAL_NVIC_SetPriority which must do
extra processing to encode the PRI+SUBPRI.
For a priority grouping of 4 (4 bits for preempt priority, 0 bits for the
sub-priority), which is used in the stm32 port, the IRQ_PRI_xxx constants
remain unchanged in their value.
This patch also "fixes" the use of raise_irq_pri() which should be passed
the encoded value (but as mentioned above the unencoded value is the same
as the encoded value for priority grouping 4, so there was no bug from this
error).
The problem is the existing code which tries to optimise the
reinitialisation of the DMA breaks the abstraction of the HAL. For the
STM32L4 the HAL's DMA setup code maintains two private vars (ChannelIndex,
DmaBaseAddress) and updates a hardware register (CCR).
In HAL_DMA_Init(), the CCR is updated to set the direction of the DMA.
This is a problem because, when using the SD Card interface, the same DMA
channel is used in both directions, so the direction bit in the CCR must
follow that.
A quick and effective fix for the L4 is to simply call HAL_DMA_DeInit() and
HAL_DMA_Init() every time.