Previous to this patch, a big-int, float or imag constant was interned
(made into a qstr) and then parsed at runtime to create an object each
time it was needed. This is wasteful in RAM and not efficient. Now,
these constants are parsed straight away in the parser and turned into
objects. This allows constants with large numbers of digits (so
addresses issue #1103) and takes us a step closer to #722.
To enable parsing constants more efficiently, mp_parse should be allowed
to raise an exception, and mp_compile can already raise a MemoryError.
So these functions need to be protected by an nlr push/pop block.
This patch adds that feature in all places. This allows to simplify how
mp_parse and mp_compile are called: they now raise an exception if they
have an error and so explicit checking is not needed anymore.
This cleans up vstr so that it's a pure "variable buffer", and the user
can decide whether they need to add a terminating null byte. In most
places where vstr is used, the vstr did not need to be null terminated
and so this patch saves code size, a tiny bit of RAM, and makes vstr
usage more efficient. When null termination is needed it must be
done explicitly using vstr_null_terminate.
With this patch str/bytes construction is streamlined. Always use a
vstr to build a str/bytes object. If the size is known beforehand then
use vstr_init_len to allocate only required memory. Otherwise use
vstr_init and the vstr will grow as needed. Then use
mp_obj_new_str_from_vstr to create a str/bytes object using the vstr
memory.
Saves code ROM: 68 bytes on stmhal, 108 bytes on bare-arm, and 336 bytes
on unix x64.
Bytecode also needs a pass to compute the stack size. This is because
the state size of the bytecode function is encoded as a variable uint,
so we must know the value of this uint before we encode it (otherwise
the size of the generated code changes from one pass to the next).
Having an entire pass for this seems wasteful (in time). Alternative is
to allocate fixed space for the state size (would need 3-4 bytes to be
general, when 1 byte is usually sufficient) which uses a bit of extra
RAM per bytecode function, and makes the code less elegant in places
where this uint is encoded/decoded.
So, for now, opt for an extra pass.
Previously to this patch all constant string/bytes objects were
interned by the compiler, and this lead to crashes when the qstr was too
long (noticeable now that qstr length storage defaults to 1 byte).
With this patch, long string/bytes objects are never interned, and are
referenced directly as constant objects within generated code using
load_const_obj.
Compiler optimises lookup of module.CONST when enabled (an existing
feature). Disabled by default; enabled for unix, windows, stmhal.
Costs about 100 bytes ROM on stmhal.
This patch makes the MICROPY_PY_BUILTINS_SLICE compile-time option
fully disable the builtin slice operation (when set to 0). This
includes removing the slice sytanx from the grammar. Now, enabling
slice costs 4228 bytes on unix x64, and 1816 bytes on stmhal.
This patch makes MICROPY_PY_BUILTINS_SET compile-time option fully
disable the builtin set object (when set to 0). This includes removing
set constructor/comprehension from the grammar, the compiler and the
emitters. Now, enabling set costs 8168 bytes on unix x64, and 3576
bytes on stmhal.
This patch gives proper SyntaxError exceptions for bad global/nonlocal
declarations. It also reduces code size: 304 bytes on unix x64, 132
bytes on stmhal.
You can now assign to the range end variable and the for-loop still
works correctly. This fully addresses issue #565.
Also fixed a bug with the stack not being fully popped when breaking out
of an optimised for-loop (and it's actually impossible to write a test
for this case!).
mp_parse_node_free now frees the memory associated with non-interned
strings. And the parser calls mp_parse_node_free when discarding a
non-used node (such as a doc string).
Also, the compiler now frees the parse tree explicitly just before it
exits (as opposed to relying on the caller to do this).
Addresses issue #708 as best we can.