/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/nlr.h" #include "py/objtype.h" #include "py/runtime0.h" #include "py/runtime.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args); /******************************************************************************/ // instance object #define is_instance_type(type) ((type)->make_new == instance_make_new) #define is_native_type(type) ((type)->make_new != instance_make_new) mp_obj_t instance_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args); STATIC mp_obj_t mp_obj_new_instance(mp_obj_t class, uint subobjs) { mp_obj_instance_t *o = m_new_obj_var(mp_obj_instance_t, mp_obj_t, subobjs); o->base.type = class; mp_map_init(&o->members, 0); mp_seq_clear(o->subobj, 0, subobjs, sizeof(*o->subobj)); return o; } STATIC int instance_count_native_bases(const mp_obj_type_t *type, const mp_obj_type_t **last_native_base) { mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); int count = 0; for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); const mp_obj_type_t *bt = (const mp_obj_type_t *)items[i]; if (bt == &mp_type_object) { // Not a "real" type continue; } if (is_native_type(bt)) { *last_native_base = bt; count++; } else { count += instance_count_native_bases(bt, last_native_base); } } return count; } // TODO // This implements depth-first left-to-right MRO, which is not compliant with Python3 MRO // http://python-history.blogspot.com/2010/06/method-resolution-order.html // https://www.python.org/download/releases/2.3/mro/ // // will keep lookup->dest[0]'s value (should be MP_OBJ_NULL on invocation) if attribute // is not found // will set lookup->dest[0] to MP_OBJ_SENTINEL if special method was found in a native // type base via slot id (as specified by lookup->meth_offset). As there can be only one // native base, it's known that it applies to instance->subobj[0]. In most cases, we also // don't need to know which type it was - because instance->subobj[0] is of that type. // The only exception is when object is not yet constructed, then we need to know base // native type to construct its instance->subobj[0] from. But this case is handled via // instance_count_native_bases(), which returns a native base which it saw. struct class_lookup_data { mp_obj_instance_t *obj; qstr attr; mp_uint_t meth_offset; mp_obj_t *dest; bool is_type; }; STATIC void mp_obj_class_lookup(struct class_lookup_data *lookup, const mp_obj_type_t *type) { assert(lookup->dest[0] == NULL); assert(lookup->dest[1] == NULL); for (;;) { // Optimize special method lookup for native types // This avoids extra method_name => slot lookup. On the other hand, // this should not be applied to class types, as will result in extra // lookup either. if (lookup->meth_offset != 0 && is_native_type(type)) { if (*(void**)((char*)type + lookup->meth_offset) != NULL) { DEBUG_printf("mp_obj_class_lookup: matched special meth slot for %s\n", qstr_str(lookup->attr)); lookup->dest[0] = MP_OBJ_SENTINEL; return; } } if (type->locals_dict != NULL) { // search locals_dict (the set of methods/attributes) assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict); mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(lookup->attr), MP_MAP_LOOKUP); if (elem != NULL) { if (lookup->is_type) { // If we look up a class method, we need to return original type for which we // do a lookup, not a (base) type in which we found the class method. const mp_obj_type_t *org_type = (const mp_obj_type_t*)lookup->obj; mp_convert_member_lookup(NULL, org_type, elem->value, lookup->dest); } else { mp_obj_instance_t *obj = lookup->obj; if (obj != MP_OBJ_NULL && is_native_type(type) && type != &mp_type_object /* object is not a real type */) { // If we're dealing with native base class, then it applies to native sub-object obj = obj->subobj[0]; } mp_convert_member_lookup(obj, type, elem->value, lookup->dest); } #if DEBUG_PRINT printf("mp_obj_class_lookup: Returning: "); mp_obj_print(lookup->dest[0], PRINT_REPR); printf(" "); mp_obj_print(lookup->dest[1], PRINT_REPR); printf("\n"); #endif return; } } // Previous code block takes care about attributes defined in .locals_dict, // but some attributes of native types may be handled using .load_attr method, // so make sure we try to lookup those too. if (lookup->obj != MP_OBJ_NULL && !lookup->is_type && is_native_type(type) && type != &mp_type_object /* object is not a real type */) { mp_load_method_maybe(lookup->obj->subobj[0], lookup->attr, lookup->dest); if (lookup->dest[0] != MP_OBJ_NULL) { return; } } // attribute not found, keep searching base classes // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return; } mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); if (len == 0) { return; } for (uint i = 0; i < len - 1; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_type_t *bt = (mp_obj_type_t*)items[i]; if (bt == &mp_type_object) { // Not a "real" type continue; } mp_obj_class_lookup(lookup, bt); if (lookup->dest[0] != MP_OBJ_NULL) { return; } } // search last base (simple tail recursion elimination) assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_type_type)); type = (mp_obj_type_t*)items[len - 1]; if (type == &mp_type_object) { // Not a "real" type return; } } } STATIC void instance_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_instance_t *self = self_in; qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__; mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = meth, .meth_offset = offsetof(mp_obj_type_t, print), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_NULL && kind == PRINT_STR) { // If there's no __str__, fall back to __repr__ lookup.attr = MP_QSTR___repr__; lookup.meth_offset = 0; mp_obj_class_lookup(&lookup, self->base.type); } if (member[0] == MP_OBJ_SENTINEL) { // Handle Exception subclasses specially if (mp_obj_is_native_exception_instance(self->subobj[0])) { if (kind != PRINT_STR) { mp_print_str(print, qstr_str(self->base.type->name)); } mp_obj_print_helper(print, self->subobj[0], kind | PRINT_EXC_SUBCLASS); } else { mp_obj_print_helper(print, self->subobj[0], kind); } return; } if (member[0] != MP_OBJ_NULL) { mp_obj_t r = mp_call_function_1(member[0], self_in); mp_obj_print_helper(print, r, PRINT_STR); return; } // TODO: CPython prints fully-qualified type name mp_printf(print, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in); } mp_obj_t instance_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; const mp_obj_type_t *native_base; uint num_native_bases = instance_count_native_bases(self, &native_base); assert(num_native_bases < 2); mp_obj_instance_t *o = mp_obj_new_instance(self_in, num_native_bases); // This executes only "__new__" part of obejection creation. // TODO: This won't work will for classes with native bases. // TODO: This is hack, should be resolved along the lines of // https://github.com/micropython/micropython/issues/606#issuecomment-43685883 if (n_args == 1 && *args == MP_OBJ_SENTINEL) { return o; } // look for __new__ function mp_obj_t init_fn[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = NULL, .attr = MP_QSTR___new__, .meth_offset = offsetof(mp_obj_type_t, make_new), .dest = init_fn, .is_type = false, }; mp_obj_class_lookup(&lookup, self); mp_obj_t new_ret = o; if (init_fn[0] == MP_OBJ_SENTINEL) { // Native type's constructor is what wins - it gets all our arguments, // and none Python classes are initialized at all. o->subobj[0] = native_base->make_new((mp_obj_type_t*)native_base, n_args, n_kw, args); } else if (init_fn[0] != MP_OBJ_NULL) { // now call Python class __new__ function with all args if (n_args == 0 && n_kw == 0) { new_ret = mp_call_function_n_kw(init_fn[0], 1, 0, (mp_obj_t*)(void*)&self_in); } else { mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw); args2[0] = self_in; memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t)); new_ret = mp_call_function_n_kw(init_fn[0], n_args + 1, n_kw, args2); m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw); } } // https://docs.python.org/3.4/reference/datamodel.html#object.__new__ // "If __new__() does not return an instance of cls, then the new instance’s __init__() method will not be invoked." if (mp_obj_get_type(new_ret) != self_in) { return new_ret; } o = new_ret; // now call Python class __init__ function with all args init_fn[0] = init_fn[1] = MP_OBJ_NULL; lookup.obj = o; lookup.attr = MP_QSTR___init__; lookup.meth_offset = 0; mp_obj_class_lookup(&lookup, self); if (init_fn[0] != MP_OBJ_NULL) { mp_obj_t init_ret; if (n_args == 0 && n_kw == 0) { init_ret = mp_call_method_n_kw(0, 0, init_fn); } else { mp_obj_t *args2 = m_new(mp_obj_t, 2 + n_args + 2 * n_kw); args2[0] = init_fn[0]; args2[1] = init_fn[1]; memcpy(args2 + 2, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t)); init_ret = mp_call_method_n_kw(n_args, n_kw, args2); m_del(mp_obj_t, args2, 2 + n_args + 2 * n_kw); } if (init_ret != mp_const_none) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "__init__() should return None")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret))); } } } return o; } const qstr mp_unary_op_method_name[] = { [MP_UNARY_OP_BOOL] = MP_QSTR___bool__, [MP_UNARY_OP_LEN] = MP_QSTR___len__, #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_UNARY_OP_POSITIVE] = MP_QSTR___pos__, [MP_UNARY_OP_NEGATIVE] = MP_QSTR___neg__, [MP_UNARY_OP_INVERT] = MP_QSTR___invert__, #endif [MP_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size }; STATIC mp_obj_t instance_unary_op(mp_uint_t op, mp_obj_t self_in) { mp_obj_instance_t *self = self_in; qstr op_name = mp_unary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NULL; } */ mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = op_name, .meth_offset = offsetof(mp_obj_type_t, unary_op), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_SENTINEL) { return mp_unary_op(op, self->subobj[0]); } else if (member[0] != MP_OBJ_NULL) { return mp_call_function_1(member[0], self_in); } else { return MP_OBJ_NULL; // op not supported } } const qstr mp_binary_op_method_name[] = { /* MP_BINARY_OP_OR, MP_BINARY_OP_XOR, MP_BINARY_OP_AND, MP_BINARY_OP_LSHIFT, MP_BINARY_OP_RSHIFT, */ [MP_BINARY_OP_ADD] = MP_QSTR___add__, [MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__, #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_BINARY_OP_MULTIPLY] = MP_QSTR___mul__, [MP_BINARY_OP_FLOOR_DIVIDE] = MP_QSTR___floordiv__, [MP_BINARY_OP_TRUE_DIVIDE] = MP_QSTR___truediv__, #endif /* MP_BINARY_OP_MODULO, MP_BINARY_OP_POWER, MP_BINARY_OP_INPLACE_OR, MP_BINARY_OP_INPLACE_XOR, MP_BINARY_OP_INPLACE_AND, MP_BINARY_OP_INPLACE_LSHIFT, MP_BINARY_OP_INPLACE_RSHIFT,*/ #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_BINARY_OP_INPLACE_ADD] = MP_QSTR___iadd__, [MP_BINARY_OP_INPLACE_SUBTRACT] = MP_QSTR___isub__, #endif /*MP_BINARY_OP_INPLACE_MULTIPLY, MP_BINARY_OP_INPLACE_FLOOR_DIVIDE, MP_BINARY_OP_INPLACE_TRUE_DIVIDE, MP_BINARY_OP_INPLACE_MODULO, MP_BINARY_OP_INPLACE_POWER,*/ [MP_BINARY_OP_LESS] = MP_QSTR___lt__, [MP_BINARY_OP_MORE] = MP_QSTR___gt__, [MP_BINARY_OP_EQUAL] = MP_QSTR___eq__, [MP_BINARY_OP_LESS_EQUAL] = MP_QSTR___le__, [MP_BINARY_OP_MORE_EQUAL] = MP_QSTR___ge__, /* MP_BINARY_OP_NOT_EQUAL, // a != b calls a == b and inverts result */ [MP_BINARY_OP_IN] = MP_QSTR___contains__, /* MP_BINARY_OP_IS, */ [MP_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size }; STATIC mp_obj_t instance_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { // Note: For ducktyping, CPython does not look in the instance members or use // __getattr__ or __getattribute__. It only looks in the class dictionary. mp_obj_instance_t *lhs = lhs_in; qstr op_name = mp_binary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NULL; } */ mp_obj_t dest[3] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = lhs, .attr = op_name, .meth_offset = offsetof(mp_obj_type_t, binary_op), .dest = dest, .is_type = false, }; mp_obj_class_lookup(&lookup, lhs->base.type); if (dest[0] == MP_OBJ_SENTINEL) { return mp_binary_op(op, lhs->subobj[0], rhs_in); } else if (dest[0] != MP_OBJ_NULL) { dest[2] = rhs_in; return mp_call_method_n_kw(1, 0, dest); } else { return MP_OBJ_NULL; // op not supported } } STATIC void mp_obj_instance_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { // logic: look in instance members then class locals assert(is_instance_type(mp_obj_get_type(self_in))); mp_obj_instance_t *self = self_in; mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { // object member, always treated as a value // TODO should we check for properties? dest[0] = elem->value; return; } struct class_lookup_data lookup = { .obj = self, .attr = attr, .meth_offset = 0, .dest = dest, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); mp_obj_t member = dest[0]; if (member != MP_OBJ_NULL) { #if MICROPY_PY_BUILTINS_PROPERTY if (MP_OBJ_IS_TYPE(member, &mp_type_property)) { // object member is a property; delegate the load to the property // Note: This is an optimisation for code size and execution time. // The proper way to do it is have the functionality just below // in a __get__ method of the property object, and then it would // be called by the descriptor code down below. But that way // requires overhead for the nested mp_call's and overhead for // the code. const mp_obj_t *proxy = mp_obj_property_get(member); if (proxy[0] == mp_const_none) { nlr_raise(mp_obj_new_exception_msg(&mp_type_AttributeError, "unreadable attribute")); } else { dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in); } return; } #endif #if MICROPY_PY_DESCRIPTORS // found a class attribute; if it has a __get__ method then call it with the // class instance and class as arguments and return the result // Note that this is functionally correct but very slow: each load_attr // requires an extra mp_load_method_maybe to check for the __get__. mp_obj_t attr_get_method[4]; mp_load_method_maybe(member, MP_QSTR___get__, attr_get_method); if (attr_get_method[0] != MP_OBJ_NULL) { attr_get_method[2] = self_in; attr_get_method[3] = mp_obj_get_type(self_in); dest[0] = mp_call_method_n_kw(2, 0, attr_get_method); } #endif return; } // try __getattr__ if (attr != MP_QSTR___getattr__) { mp_obj_t dest2[3]; mp_load_method_maybe(self_in, MP_QSTR___getattr__, dest2); if (dest2[0] != MP_OBJ_NULL) { // __getattr__ exists, call it and return its result // XXX if this fails to load the requested attr, should we catch the attribute error and return silently? dest2[2] = MP_OBJ_NEW_QSTR(attr); dest[0] = mp_call_method_n_kw(1, 0, dest2); return; } } } STATIC bool mp_obj_instance_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { mp_obj_instance_t *self = self_in; #if MICROPY_PY_BUILTINS_PROPERTY || MICROPY_PY_DESCRIPTORS // With property and/or descriptors enabled we need to do a lookup // first in the class dict for the attribute to see if the store should // be delegated. // Note: this makes all stores slow... how to fix? mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = attr, .meth_offset = 0, .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] != MP_OBJ_NULL) { #if MICROPY_PY_BUILTINS_PROPERTY if (MP_OBJ_IS_TYPE(member[0], &mp_type_property)) { // attribute exists and is a property; delegate the store/delete // Note: This is an optimisation for code size and execution time. // The proper way to do it is have the functionality just below in // a __set__/__delete__ method of the property object, and then it // would be called by the descriptor code down below. But that way // requires overhead for the nested mp_call's and overhead for // the code. const mp_obj_t *proxy = mp_obj_property_get(member[0]); mp_obj_t dest[2] = {self_in, value}; if (value == MP_OBJ_NULL) { // delete attribute if (proxy[2] == mp_const_none) { // TODO better error message? return false; } else { mp_call_function_n_kw(proxy[2], 1, 0, dest); return true; } } else { // store attribute if (proxy[1] == mp_const_none) { // TODO better error message? return false; } else { mp_call_function_n_kw(proxy[1], 2, 0, dest); return true; } } } #endif #if MICROPY_PY_DESCRIPTORS // found a class attribute; if it has a __set__/__delete__ method then // call it with the class instance (and value) as arguments if (value == MP_OBJ_NULL) { // delete attribute mp_obj_t attr_delete_method[3]; mp_load_method_maybe(member[0], MP_QSTR___delete__, attr_delete_method); if (attr_delete_method[0] != MP_OBJ_NULL) { attr_delete_method[2] = self_in; mp_call_method_n_kw(1, 0, attr_delete_method); return true; } } else { // store attribute mp_obj_t attr_set_method[4]; mp_load_method_maybe(member[0], MP_QSTR___set__, attr_set_method); if (attr_set_method[0] != MP_OBJ_NULL) { attr_set_method[2] = self_in; attr_set_method[3] = value; mp_call_method_n_kw(2, 0, attr_set_method); return true; } } #endif } #endif if (value == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); return elem != NULL; } else { // store attribute mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; return true; } } void mp_obj_instance_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] == MP_OBJ_NULL) { mp_obj_instance_load_attr(self_in, attr, dest); } else { if (mp_obj_instance_store_attr(self_in, attr, dest[1])) { dest[0] = MP_OBJ_NULL; // indicate success } } } STATIC mp_obj_t instance_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .meth_offset = offsetof(mp_obj_type_t, subscr), .dest = member, .is_type = false, }; uint meth_args; if (value == MP_OBJ_NULL) { // delete item lookup.attr = MP_QSTR___delitem__; mp_obj_class_lookup(&lookup, self->base.type); meth_args = 2; } else if (value == MP_OBJ_SENTINEL) { // load item lookup.attr = MP_QSTR___getitem__; mp_obj_class_lookup(&lookup, self->base.type); meth_args = 2; } else { // store item lookup.attr = MP_QSTR___setitem__; mp_obj_class_lookup(&lookup, self->base.type); meth_args = 3; } if (member[0] == MP_OBJ_SENTINEL) { return mp_obj_subscr(self->subobj[0], index, value); } else if (member[0] != MP_OBJ_NULL) { mp_obj_t args[3] = {self_in, index, value}; // TODO probably need to call mp_convert_member_lookup, and use mp_call_method_n_kw mp_obj_t ret = mp_call_function_n_kw(member[0], meth_args, 0, args); if (value == MP_OBJ_SENTINEL) { return ret; } else { return mp_const_none; } } else { return MP_OBJ_NULL; // op not supported } } STATIC mp_obj_t mp_obj_instance_get_call(mp_obj_t self_in) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL, MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR___call__, .meth_offset = offsetof(mp_obj_type_t, call), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); return member[0]; } bool mp_obj_instance_is_callable(mp_obj_t self_in) { return mp_obj_instance_get_call(self_in) != MP_OBJ_NULL; } mp_obj_t mp_obj_instance_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_obj_t call = mp_obj_instance_get_call(self_in); if (call == MP_OBJ_NULL) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "object not callable")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(self_in))); } } mp_obj_instance_t *self = self_in; if (call == MP_OBJ_SENTINEL) { return mp_call_function_n_kw(self->subobj[0], n_args, n_kw, args); } mp_obj_t meth = mp_obj_new_bound_meth(call, self); return mp_call_function_n_kw(meth, n_args, n_kw, args); } STATIC mp_obj_t instance_getiter(mp_obj_t self_in) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR___iter__, .meth_offset = offsetof(mp_obj_type_t, getiter), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_NULL) { return MP_OBJ_NULL; } else if (member[0] == MP_OBJ_SENTINEL) { mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]); return type->getiter(self->subobj[0]); } else { return mp_call_method_n_kw(0, 0, member); } } STATIC mp_int_t instance_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { mp_obj_instance_t *self = self_in; mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR_, // don't actually look for a method .meth_offset = offsetof(mp_obj_type_t, buffer_p.get_buffer), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_SENTINEL) { mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]); return type->buffer_p.get_buffer(self->subobj[0], bufinfo, flags); } else { return 1; // object does not support buffer protocol } } /******************************************************************************/ // type object // - the struct is mp_obj_type_t and is defined in obj.h so const types can be made // - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object // - creating a new class (a new type) creates a new mp_obj_type_t STATIC void type_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; mp_obj_type_t *self = self_in; mp_printf(print, "", self->name); } STATIC mp_obj_t type_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 1, 3, false); switch (n_args) { case 1: return mp_obj_get_type(args[0]); case 3: // args[0] = name // args[1] = bases tuple // args[2] = locals dict return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]); default: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "type takes 1 or 3 arguments")); } } STATIC mp_obj_t type_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // instantiate an instance of a class mp_obj_type_t *self = self_in; if (self->make_new == NULL) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "cannot create instance")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "cannot create '%q' instances", self->name)); } } // make new instance mp_obj_t o = self->make_new(self, n_args, n_kw, args); // return new instance return o; } STATIC void type_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; if (dest[0] == MP_OBJ_NULL) { // load attribute #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___name__) { dest[0] = MP_OBJ_NEW_QSTR(self->name); return; } #endif struct class_lookup_data lookup = { .obj = self_in, .attr = attr, .meth_offset = 0, .dest = dest, .is_type = true, }; mp_obj_class_lookup(&lookup, self); } else { // delete/store attribute // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? if (self->locals_dict != NULL) { assert(MP_OBJ_IS_TYPE(self->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(self->locals_dict); if (dest[1] == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); // note that locals_map may be in ROM, so remove will fail in that case if (elem != NULL) { dest[0] = MP_OBJ_NULL; // indicate success } } else { // store attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); // note that locals_map may be in ROM, so add will fail in that case if (elem != NULL) { elem->value = dest[1]; dest[0] = MP_OBJ_NULL; // indicate success } } } } } const mp_obj_type_t mp_type_type = { { &mp_type_type }, .name = MP_QSTR_type, .print = type_print, .make_new = type_make_new, .call = type_call, .attr = type_attr, }; mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) { assert(MP_OBJ_IS_TYPE(bases_tuple, &mp_type_tuple)); // Micro Python restriction, for now assert(MP_OBJ_IS_TYPE(locals_dict, &mp_type_dict)); // Micro Python restriction, for now // TODO might need to make a copy of locals_dict; at least that's how CPython does it // Basic validation of base classes mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(bases_tuple, &len, &items); for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_type_t *t = items[i]; // TODO: Verify with CPy, tested on function type if (t->make_new == NULL) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "type is not an acceptable base type")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "type '%q' is not an acceptable base type", t->name)); } } } mp_obj_type_t *o = m_new0(mp_obj_type_t, 1); o->base.type = &mp_type_type; o->name = name; o->print = instance_print; o->make_new = instance_make_new; o->call = mp_obj_instance_call; o->unary_op = instance_unary_op; o->binary_op = instance_binary_op; o->attr = mp_obj_instance_attr; o->subscr = instance_subscr; o->getiter = instance_getiter; //o->iternext = ; not implemented o->buffer_p.get_buffer = instance_get_buffer; //o->stream_p = ; not implemented o->bases_tuple = bases_tuple; o->locals_dict = locals_dict; const mp_obj_type_t *native_base; uint num_native_bases = instance_count_native_bases(o, &native_base); if (num_native_bases > 1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "multiple bases have instance lay-out conflict")); } mp_map_t *locals_map = mp_obj_dict_get_map(o->locals_dict); mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(MP_QSTR___new__), MP_MAP_LOOKUP); if (elem != NULL) { // __new__ slot exists; check if it is a function if (MP_OBJ_IS_FUN(elem->value)) { // __new__ is a function, wrap it in a staticmethod decorator elem->value = static_class_method_make_new((mp_obj_t)&mp_type_staticmethod, 1, 0, &elem->value); } } return o; } /******************************************************************************/ // super object typedef struct _mp_obj_super_t { mp_obj_base_t base; mp_obj_t type; mp_obj_t obj; } mp_obj_super_t; STATIC void super_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; mp_obj_super_t *self = self_in; mp_print_str(print, "type, PRINT_STR); mp_print_str(print, ", "); mp_obj_print_helper(print, self->obj, PRINT_STR); mp_print_str(print, ">"); } STATIC mp_obj_t super_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { (void)type_in; // 0 arguments are turned into 2 in the compiler // 1 argument is not yet implemented mp_arg_check_num(n_args, n_kw, 2, 2, false); return mp_obj_new_super(args[0], args[1]); } STATIC void super_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] != MP_OBJ_NULL) { // not load attribute return; } assert(MP_OBJ_IS_TYPE(self_in, &mp_type_super)); mp_obj_super_t *self = self_in; assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type)); mp_obj_type_t *type = self->type; // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return; } mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); struct class_lookup_data lookup = { .obj = self->obj, .attr = attr, .meth_offset = 0, .dest = dest, .is_type = false, }; for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_class_lookup(&lookup, (mp_obj_type_t*)items[i]); if (dest[0] != MP_OBJ_NULL) { return; } } mp_obj_class_lookup(&lookup, &mp_type_object); } const mp_obj_type_t mp_type_super = { { &mp_type_type }, .name = MP_QSTR_super, .print = super_print, .make_new = super_make_new, .attr = super_attr, }; mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) { mp_obj_super_t *o = m_new_obj(mp_obj_super_t); *o = (mp_obj_super_t){{&mp_type_super}, type, obj}; return o; } /******************************************************************************/ // subclassing and built-ins specific to types // object and classinfo should be type objects // (but the function will fail gracefully if they are not) bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) { for (;;) { if (object == classinfo) { return true; } // not equivalent classes, keep searching base classes // object should always be a type object, but just return false if it's not if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { return false; } const mp_obj_type_t *self = object; // for a const struct, this entry might be NULL if (self->bases_tuple == MP_OBJ_NULL) { return false; } // get the base objects (they should be type objects) mp_uint_t len; mp_obj_t *items; mp_obj_tuple_get(self->bases_tuple, &len, &items); if (len == 0) { return false; } // iterate through the base objects for (uint i = 0; i < len - 1; i++) { if (mp_obj_is_subclass_fast(items[i], classinfo)) { return true; } } // search last base (simple tail recursion elimination) object = items[len - 1]; } } STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) { mp_uint_t len; mp_obj_t *items; if (MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) { len = 1; items = &classinfo; } else if (MP_OBJ_IS_TYPE(classinfo, &mp_type_tuple)) { mp_obj_tuple_get(classinfo, &len, &items); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 2 must be a class or a tuple of classes")); } for (uint i = 0; i < len; i++) { // We explicitly check for 'object' here since no-one explicitly derives from it if (items[i] == &mp_type_object || mp_obj_is_subclass_fast(object, items[i])) { return mp_const_true; } } return mp_const_false; } STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) { if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 1 must be a class")); } return mp_obj_is_subclass(object, classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass); STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) { return mp_obj_is_subclass(mp_obj_get_type(object), classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance); mp_obj_t mp_instance_cast_to_native_base(mp_const_obj_t self_in, mp_const_obj_t native_type) { mp_obj_type_t *self_type = mp_obj_get_type(self_in); if (!mp_obj_is_subclass_fast(self_type, native_type)) { return MP_OBJ_NULL; } mp_obj_instance_t *self = (mp_obj_instance_t*)self_in; return self->subobj[0]; } /******************************************************************************/ // staticmethod and classmethod types (probably should go in a different file) STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { assert(self_in == &mp_type_staticmethod || self_in == &mp_type_classmethod); mp_arg_check_num(n_args, n_kw, 1, 1, false); mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t); *o = (mp_obj_static_class_method_t){{(mp_obj_type_t*)self_in}, args[0]}; return o; } const mp_obj_type_t mp_type_staticmethod = { { &mp_type_type }, .name = MP_QSTR_staticmethod, .make_new = static_class_method_make_new, }; const mp_obj_type_t mp_type_classmethod = { { &mp_type_type }, .name = MP_QSTR_classmethod, .make_new = static_class_method_make_new, };