/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" // Helpers for sequence types #define SWAP(type, var1, var2) { type t = var2; var2 = var1; var1 = t; } // Implements backend of sequence * integer operation. Assumes elements are // memory-adjacent in sequence. void mp_seq_multiply(const void *items, size_t item_sz, size_t len, size_t times, void *dest) { for (size_t i = 0; i < times; i++) { size_t copy_sz = item_sz * len; memcpy(dest, items, copy_sz); dest = (char *)dest + copy_sz; } } #if MICROPY_PY_BUILTINS_SLICE bool mp_seq_get_fast_slice_indexes(mp_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes) { mp_obj_slice_indices(slice, len, indexes); // If the index is negative then stop points to the last item, not after it if (indexes->step < 0) { indexes->stop++; } // CPython returns empty sequence in such case, or point for assignment is at start if (indexes->step > 0 && indexes->start > indexes->stop) { indexes->stop = indexes->start; } else if (indexes->step < 0 && indexes->start < indexes->stop) { indexes->stop = indexes->start + 1; } return indexes->step == 1; } mp_obj_t mp_seq_extract_slice(const mp_obj_t *seq, mp_bound_slice_t *indexes) { mp_int_t start = indexes->start, stop = indexes->stop; mp_int_t step = indexes->step; mp_obj_t res = mp_obj_new_list(0, NULL); if (step < 0) { while (start >= stop) { mp_obj_list_append(res, seq[start]); start += step; } } else { while (start < stop) { mp_obj_list_append(res, seq[start]); start += step; } } return res; } #endif // Special-case comparison function for sequences of bytes // Don't pass MP_BINARY_OP_NOT_EQUAL here bool mp_seq_cmp_bytes(mp_uint_t op, const byte *data1, size_t len1, const byte *data2, size_t len2) { if (op == MP_BINARY_OP_EQUAL && len1 != len2) { return false; } // Let's deal only with > & >= if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) { SWAP(const byte *, data1, data2); SWAP(size_t, len1, len2); if (op == MP_BINARY_OP_LESS) { op = MP_BINARY_OP_MORE; } else { op = MP_BINARY_OP_MORE_EQUAL; } } size_t min_len = len1 < len2 ? len1 : len2; int res = memcmp(data1, data2, min_len); if (op == MP_BINARY_OP_EQUAL) { // If we are checking for equality, here's the answer return res == 0; } if (res < 0) { return false; } if (res > 0) { return true; } // If we had tie in the last element... // ... and we have lists of different lengths... if (len1 != len2) { if (len1 < len2) { // ... then longer list length wins (we deal only with >) return false; } } else if (op == MP_BINARY_OP_MORE) { // Otherwise, if we have strict relation, equality means failure return false; } return true; } // Special-case comparison function for sequences of mp_obj_t // Don't pass MP_BINARY_OP_NOT_EQUAL here bool mp_seq_cmp_objs(mp_uint_t op, const mp_obj_t *items1, size_t len1, const mp_obj_t *items2, size_t len2) { if (op == MP_BINARY_OP_EQUAL && len1 != len2) { return false; } // Let's deal only with > & >= if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) { SWAP(const mp_obj_t *, items1, items2); SWAP(size_t, len1, len2); if (op == MP_BINARY_OP_LESS) { op = MP_BINARY_OP_MORE; } else { op = MP_BINARY_OP_MORE_EQUAL; } } size_t len = len1 < len2 ? len1 : len2; for (size_t i = 0; i < len; i++) { // If current elements equal, can't decide anything - go on if (mp_obj_equal(items1[i], items2[i])) { continue; } // Otherwise, if they are not equal, we can have final decision based on them if (op == MP_BINARY_OP_EQUAL) { // In particular, if we are checking for equality, here're the answer return false; } // Otherwise, application of relation op gives the answer return mp_binary_op(op, items1[i], items2[i]) == mp_const_true; } // If we had tie in the last element... // ... and we have lists of different lengths... if (len1 != len2) { if (len1 < len2) { // ... then longer list length wins (we deal only with >) return false; } } else if (op == MP_BINARY_OP_MORE) { // Otherwise, if we have strict relation, sequence equality means failure return false; } return true; } // Special-case of index() which searches for mp_obj_t mp_obj_t mp_seq_index_obj(const mp_obj_t *items, size_t len, size_t n_args, const mp_obj_t *args) { const mp_obj_type_t *type = mp_obj_get_type(args[0]); mp_obj_t value = args[1]; size_t start = 0; size_t stop = len; if (n_args >= 3) { start = mp_get_index(type, len, args[2], true); if (n_args >= 4) { stop = mp_get_index(type, len, args[3], true); } } for (size_t i = start; i < stop; i++) { if (mp_obj_equal(items[i], value)) { // Common sense says this cannot overflow small int return MP_OBJ_NEW_SMALL_INT(i); } } mp_raise_ValueError(MP_ERROR_TEXT("object not in sequence")); } mp_obj_t mp_seq_count_obj(const mp_obj_t *items, size_t len, mp_obj_t value) { size_t count = 0; for (size_t i = 0; i < len; i++) { if (mp_obj_equal(items[i], value)) { count++; } } // Common sense says this cannot overflow small int return MP_OBJ_NEW_SMALL_INT(count); }