/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // Essentially normal Python has 1 type: Python objects // Viper has more than 1 type, and is just a more complicated (a superset of) Python. // If you declare everything in Viper as a Python object (ie omit type decls) then // it should in principle be exactly the same as Python native. // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. // In practice we won't have a VM but rather do this in asm which is actually very minimal. // Because it breaks strict Python equivalence it should be a completely separate // decorator. It breaks equivalence because overflow on integers wraps around. // It shouldn't break equivalence if you don't use the new types, but since the // type decls might be used in normal Python for other reasons, it's probably safest, // cleanest and clearest to make it a separate decorator. // Actually, it does break equivalence because integers default to native integers, // not Python objects. // for x in l[0:8]: can be compiled into a native loop if l has pointer type #include #include #include #include "py/nlr.h" #include "py/emit.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // wrapper around everything in this file #if (MICROPY_EMIT_X64 && N_X64) \ || (MICROPY_EMIT_X86 && N_X86) \ || (MICROPY_EMIT_THUMB && N_THUMB) \ || (MICROPY_EMIT_ARM && N_ARM) #if N_X64 // x64 specific stuff #include "py/asmx64.h" #define EXPORT_FUN(name) emit_native_x64_##name #define REG_RET ASM_X64_REG_RAX #define REG_ARG_1 ASM_X64_REG_RDI #define REG_ARG_2 ASM_X64_REG_RSI #define REG_ARG_3 ASM_X64_REG_RDX #define REG_ARG_4 ASM_X64_REG_RCX // caller-save #define REG_TEMP0 ASM_X64_REG_RAX #define REG_TEMP1 ASM_X64_REG_RDI #define REG_TEMP2 ASM_X64_REG_RSI // callee-save #define REG_LOCAL_1 ASM_X64_REG_RBX #define REG_LOCAL_2 ASM_X64_REG_R12 #define REG_LOCAL_3 ASM_X64_REG_R13 #define REG_LOCAL_NUM (3) #define ASM_PASS_COMPUTE ASM_X64_PASS_COMPUTE #define ASM_PASS_EMIT ASM_X64_PASS_EMIT #define ASM_T asm_x64_t #define ASM_NEW asm_x64_new #define ASM_FREE asm_x64_free #define ASM_GET_CODE asm_x64_get_code #define ASM_GET_CODE_SIZE asm_x64_get_code_size #define ASM_START_PASS asm_x64_start_pass #define ASM_END_PASS asm_x64_end_pass #define ASM_ENTRY asm_x64_entry #define ASM_EXIT asm_x64_exit #define ASM_LABEL_ASSIGN asm_x64_label_assign #define ASM_JUMP asm_x64_jmp_label #define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ do { \ asm_x64_test_r8_with_r8(as, reg, reg); \ asm_x64_jcc_label(as, ASM_X64_CC_JZ, label); \ } while (0) #define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ do { \ asm_x64_test_r8_with_r8(as, reg, reg); \ asm_x64_jcc_label(as, ASM_X64_CC_JNZ, label); \ } while (0) #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ do { \ asm_x64_cmp_r64_with_r64(as, reg1, reg2); \ asm_x64_jcc_label(as, ASM_X64_CC_JE, label); \ } while (0) #define ASM_CALL_IND(as, ptr, idx) asm_x64_call_ind(as, ptr, ASM_X64_REG_RAX) #define ASM_MOV_REG_TO_LOCAL asm_x64_mov_r64_to_local #define ASM_MOV_IMM_TO_REG asm_x64_mov_i64_to_r64_optimised #define ASM_MOV_ALIGNED_IMM_TO_REG asm_x64_mov_i64_to_r64_aligned #define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \ do { \ asm_x64_mov_i64_to_r64_optimised(as, (imm), (reg_temp)); \ asm_x64_mov_r64_to_local(as, (reg_temp), (local_num)); \ } while (false) #define ASM_MOV_LOCAL_TO_REG asm_x64_mov_local_to_r64 #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x64_mov_r64_r64((as), (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG asm_x64_mov_local_addr_to_r64 #define ASM_LSL_REG(as, reg) asm_x64_shl_r64_cl((as), (reg)) #define ASM_ASR_REG(as, reg) asm_x64_sar_r64_cl((as), (reg)) #define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x64_or_r64_r64((as), (reg_dest), (reg_src)) #define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x64_xor_r64_r64((as), (reg_dest), (reg_src)) #define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x64_and_r64_r64((as), (reg_dest), (reg_src)) #define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x64_add_r64_r64((as), (reg_dest), (reg_src)) #define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x64_sub_r64_r64((as), (reg_dest), (reg_src)) #define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem64_to_r64((as), (reg_base), 0, (reg_dest)) #define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem8_to_r64zx((as), (reg_base), 0, (reg_dest)) #define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem16_to_r64zx((as), (reg_base), 0, (reg_dest)) #define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x64_mov_r64_to_mem64((as), (reg_src), (reg_base), 0) #define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x64_mov_r8_to_mem8((as), (reg_src), (reg_base), 0) #define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x64_mov_r16_to_mem16((as), (reg_src), (reg_base), 0) #elif N_X86 // x86 specific stuff #include "py/asmx86.h" STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = { [MP_F_CONVERT_OBJ_TO_NATIVE] = 2, [MP_F_CONVERT_NATIVE_TO_OBJ] = 2, [MP_F_LOAD_CONST_INT] = 1, [MP_F_LOAD_CONST_DEC] = 1, [MP_F_LOAD_CONST_STR] = 1, [MP_F_LOAD_CONST_BYTES] = 1, [MP_F_LOAD_NAME] = 1, [MP_F_LOAD_GLOBAL] = 1, [MP_F_LOAD_BUILD_CLASS] = 0, [MP_F_LOAD_ATTR] = 2, [MP_F_LOAD_METHOD] = 3, [MP_F_STORE_NAME] = 2, [MP_F_STORE_GLOBAL] = 2, [MP_F_STORE_ATTR] = 3, [MP_F_OBJ_SUBSCR] = 3, [MP_F_OBJ_IS_TRUE] = 1, [MP_F_UNARY_OP] = 2, [MP_F_BINARY_OP] = 3, [MP_F_BUILD_TUPLE] = 2, [MP_F_BUILD_LIST] = 2, [MP_F_LIST_APPEND] = 2, [MP_F_BUILD_MAP] = 1, [MP_F_STORE_MAP] = 3, #if MICROPY_PY_BUILTINS_SET [MP_F_BUILD_SET] = 2, [MP_F_STORE_SET] = 2, #endif [MP_F_MAKE_FUNCTION_FROM_RAW_CODE] = 3, [MP_F_NATIVE_CALL_FUNCTION_N_KW] = 3, [MP_F_CALL_METHOD_N_KW] = 3, [MP_F_GETITER] = 1, [MP_F_ITERNEXT] = 1, [MP_F_NLR_PUSH] = 1, [MP_F_NLR_POP] = 0, [MP_F_NATIVE_RAISE] = 1, [MP_F_IMPORT_NAME] = 3, [MP_F_IMPORT_FROM] = 2, [MP_F_IMPORT_ALL] = 1, #if MICROPY_PY_BUILTINS_SLICE [MP_F_NEW_SLICE] = 3, #endif [MP_F_UNPACK_SEQUENCE] = 3, [MP_F_UNPACK_EX] = 3, [MP_F_DELETE_NAME] = 1, [MP_F_DELETE_GLOBAL] = 1, }; #define EXPORT_FUN(name) emit_native_x86_##name #define REG_RET ASM_X86_REG_EAX #define REG_ARG_1 ASM_X86_REG_ARG_1 #define REG_ARG_2 ASM_X86_REG_ARG_2 #define REG_ARG_3 ASM_X86_REG_ARG_3 // caller-save, so can be used as temporaries #define REG_TEMP0 ASM_X86_REG_EAX #define REG_TEMP1 ASM_X86_REG_ECX #define REG_TEMP2 ASM_X86_REG_EDX // callee-save, so can be used as locals #define REG_LOCAL_1 ASM_X86_REG_EBX #define REG_LOCAL_2 ASM_X86_REG_ESI #define REG_LOCAL_3 ASM_X86_REG_EDI #define REG_LOCAL_NUM (3) #define ASM_PASS_COMPUTE ASM_X86_PASS_COMPUTE #define ASM_PASS_EMIT ASM_X86_PASS_EMIT #define ASM_T asm_x86_t #define ASM_NEW asm_x86_new #define ASM_FREE asm_x86_free #define ASM_GET_CODE asm_x86_get_code #define ASM_GET_CODE_SIZE asm_x86_get_code_size #define ASM_START_PASS asm_x86_start_pass #define ASM_END_PASS asm_x86_end_pass #define ASM_ENTRY asm_x86_entry #define ASM_EXIT asm_x86_exit #define ASM_LABEL_ASSIGN asm_x86_label_assign #define ASM_JUMP asm_x86_jmp_label #define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ do { \ asm_x86_test_r8_with_r8(as, reg, reg); \ asm_x86_jcc_label(as, ASM_X86_CC_JZ, label); \ } while (0) #define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ do { \ asm_x86_test_r8_with_r8(as, reg, reg); \ asm_x86_jcc_label(as, ASM_X86_CC_JNZ, label); \ } while (0) #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ do { \ asm_x86_cmp_r32_with_r32(as, reg1, reg2); \ asm_x86_jcc_label(as, ASM_X86_CC_JE, label); \ } while (0) #define ASM_CALL_IND(as, ptr, idx) asm_x86_call_ind(as, ptr, mp_f_n_args[idx], ASM_X86_REG_EAX) #define ASM_MOV_REG_TO_LOCAL asm_x86_mov_r32_to_local #define ASM_MOV_IMM_TO_REG asm_x86_mov_i32_to_r32 #define ASM_MOV_ALIGNED_IMM_TO_REG asm_x86_mov_i32_to_r32_aligned #define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \ do { \ asm_x86_mov_i32_to_r32(as, (imm), (reg_temp)); \ asm_x86_mov_r32_to_local(as, (reg_temp), (local_num)); \ } while (false) #define ASM_MOV_LOCAL_TO_REG asm_x86_mov_local_to_r32 #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x86_mov_r32_r32((as), (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG asm_x86_mov_local_addr_to_r32 #define ASM_LSL_REG(as, reg) asm_x86_shl_r32_cl((as), (reg)) #define ASM_ASR_REG(as, reg) asm_x86_sar_r32_cl((as), (reg)) #define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x86_or_r32_r32((as), (reg_dest), (reg_src)) #define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x86_xor_r32_r32((as), (reg_dest), (reg_src)) #define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x86_and_r32_r32((as), (reg_dest), (reg_src)) #define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x86_add_r32_r32((as), (reg_dest), (reg_src)) #define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x86_sub_r32_r32((as), (reg_dest), (reg_src)) #define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem32_to_r32((as), (reg_base), 0, (reg_dest)) #define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem8_to_r32zx((as), (reg_base), 0, (reg_dest)) #define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem16_to_r32zx((as), (reg_base), 0, (reg_dest)) #define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 0) #define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x86_mov_r8_to_mem8((as), (reg_src), (reg_base), 0) #define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x86_mov_r16_to_mem16((as), (reg_src), (reg_base), 0) #elif N_THUMB // thumb specific stuff #include "py/asmthumb.h" #define EXPORT_FUN(name) emit_native_thumb_##name #define REG_RET ASM_THUMB_REG_R0 #define REG_ARG_1 ASM_THUMB_REG_R0 #define REG_ARG_2 ASM_THUMB_REG_R1 #define REG_ARG_3 ASM_THUMB_REG_R2 #define REG_ARG_4 ASM_THUMB_REG_R3 #define REG_TEMP0 ASM_THUMB_REG_R0 #define REG_TEMP1 ASM_THUMB_REG_R1 #define REG_TEMP2 ASM_THUMB_REG_R2 #define REG_LOCAL_1 ASM_THUMB_REG_R4 #define REG_LOCAL_2 ASM_THUMB_REG_R5 #define REG_LOCAL_3 ASM_THUMB_REG_R6 #define REG_LOCAL_NUM (3) #define ASM_PASS_COMPUTE ASM_THUMB_PASS_COMPUTE #define ASM_PASS_EMIT ASM_THUMB_PASS_EMIT #define ASM_T asm_thumb_t #define ASM_NEW asm_thumb_new #define ASM_FREE asm_thumb_free #define ASM_GET_CODE asm_thumb_get_code #define ASM_GET_CODE_SIZE asm_thumb_get_code_size #define ASM_START_PASS asm_thumb_start_pass #define ASM_END_PASS asm_thumb_end_pass #define ASM_ENTRY asm_thumb_entry #define ASM_EXIT asm_thumb_exit #define ASM_LABEL_ASSIGN asm_thumb_label_assign #define ASM_JUMP asm_thumb_b_label #define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ do { \ asm_thumb_cmp_rlo_i8(as, reg, 0); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \ } while (0) #define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ do { \ asm_thumb_cmp_rlo_i8(as, reg, 0); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_NE, label); \ } while (0) #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ do { \ asm_thumb_cmp_rlo_rlo(as, reg1, reg2); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \ } while (0) #define ASM_CALL_IND(as, ptr, idx) asm_thumb_bl_ind(as, ptr, idx, ASM_THUMB_REG_R3) #define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_thumb_mov_local_reg(as, (local_num), (reg)) #define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_optimised(as, (reg), (imm)) #define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_aligned(as, (reg), (imm)) #define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \ do { \ asm_thumb_mov_reg_i32_optimised(as, (reg_temp), (imm)); \ asm_thumb_mov_local_reg(as, (local_num), (reg_temp)); \ } while (false) #define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local(as, (reg), (local_num)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_thumb_mov_reg_reg((as), (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local_addr(as, (reg), (local_num)) #define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_LSL, (reg_dest), (reg_shift)) #define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ASR, (reg_dest), (reg_shift)) #define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ORR, (reg_dest), (reg_src)) #define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_EOR, (reg_dest), (reg_src)) #define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_AND, (reg_dest), (reg_src)) #define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_thumb_add_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_thumb_sub_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrb_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrh_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), 0) #define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_thumb_strb_rlo_rlo_i5((as), (reg_src), (reg_base), 0) #define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_thumb_strh_rlo_rlo_i5((as), (reg_src), (reg_base), 0) #elif N_ARM // ARM specific stuff #include "py/asmarm.h" #define EXPORT_FUN(name) emit_native_arm_##name #define REG_RET ASM_ARM_REG_R0 #define REG_ARG_1 ASM_ARM_REG_R0 #define REG_ARG_2 ASM_ARM_REG_R1 #define REG_ARG_3 ASM_ARM_REG_R2 #define REG_ARG_4 ASM_ARM_REG_R3 #define REG_TEMP0 ASM_ARM_REG_R0 #define REG_TEMP1 ASM_ARM_REG_R1 #define REG_TEMP2 ASM_ARM_REG_R2 #define REG_LOCAL_1 ASM_ARM_REG_R4 #define REG_LOCAL_2 ASM_ARM_REG_R5 #define REG_LOCAL_3 ASM_ARM_REG_R6 #define REG_LOCAL_NUM (3) #define ASM_PASS_COMPUTE ASM_ARM_PASS_COMPUTE #define ASM_PASS_EMIT ASM_ARM_PASS_EMIT #define ASM_T asm_arm_t #define ASM_NEW asm_arm_new #define ASM_FREE asm_arm_free #define ASM_GET_CODE asm_arm_get_code #define ASM_GET_CODE_SIZE asm_arm_get_code_size #define ASM_START_PASS asm_arm_start_pass #define ASM_END_PASS asm_arm_end_pass #define ASM_ENTRY asm_arm_entry #define ASM_EXIT asm_arm_exit #define ASM_LABEL_ASSIGN asm_arm_label_assign #define ASM_JUMP asm_arm_b_label #define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ do { \ asm_arm_cmp_reg_i8(as, reg, 0); \ asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \ } while (0) #define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ do { \ asm_arm_cmp_reg_i8(as, reg, 0); \ asm_arm_bcc_label(as, ASM_ARM_CC_NE, label); \ } while (0) #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ do { \ asm_arm_cmp_reg_reg(as, reg1, reg2); \ asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \ } while (0) #define ASM_CALL_IND(as, ptr, idx) asm_arm_bl_ind(as, ptr, idx, ASM_ARM_REG_R3) #define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_arm_mov_local_reg(as, (local_num), (reg)) #define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm)) #define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm)) #define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \ do { \ asm_arm_mov_reg_i32(as, (reg_temp), (imm)); \ asm_arm_mov_local_reg(as, (local_num), (reg_temp)); \ } while (false) #define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_arm_mov_reg_local(as, (reg), (local_num)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_arm_mov_reg_reg((as), (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_arm_mov_reg_local_addr(as, (reg), (local_num)) #define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_arm_lsl_reg_reg((as), (reg_dest), (reg_shift)) #define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_arm_asr_reg_reg((as), (reg_dest), (reg_shift)) #define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_arm_orr_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_arm_eor_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_arm_and_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_arm_add_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_arm_sub_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_arm_ldr_reg_reg((as), (reg_dest), (reg_base)) #define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_arm_ldrb_reg_reg((as), (reg_dest), (reg_base)) #define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_arm_ldrh_reg_reg((as), (reg_dest), (reg_base)) #define ASM_STORE_REG_REG(as, reg_value, reg_base) asm_arm_str_reg_reg((as), (reg_value), (reg_base)) #define ASM_STORE8_REG_REG(as, reg_value, reg_base) asm_arm_strb_reg_reg((as), (reg_value), (reg_base)) #define ASM_STORE16_REG_REG(as, reg_value, reg_base) asm_arm_strh_reg_reg((as), (reg_value), (reg_base)) #else #error unknown native emitter #endif typedef enum { STACK_VALUE, STACK_REG, STACK_IMM, } stack_info_kind_t; // these enums must be distinct and the bottom 2 bits // must correspond to the correct MP_NATIVE_TYPE_xxx value typedef enum { VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ, VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL, VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT, VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT, VTYPE_PTR = 0x10 | MP_NATIVE_TYPE_UINT, // pointer to word sized entity VTYPE_PTR8 = 0x20 | MP_NATIVE_TYPE_UINT, VTYPE_PTR16 = 0x30 | MP_NATIVE_TYPE_UINT, VTYPE_PTR_NONE = 0x40 | MP_NATIVE_TYPE_UINT, VTYPE_UNBOUND = 0x50 | MP_NATIVE_TYPE_OBJ, VTYPE_BUILTIN_CAST = 0x60 | MP_NATIVE_TYPE_OBJ, } vtype_kind_t; typedef struct _stack_info_t { vtype_kind_t vtype; stack_info_kind_t kind; union { int u_reg; mp_int_t u_imm; } data; } stack_info_t; struct _emit_t { int pass; bool do_viper_types; vtype_kind_t return_vtype; mp_uint_t local_vtype_alloc; vtype_kind_t *local_vtype; mp_uint_t stack_info_alloc; stack_info_t *stack_info; vtype_kind_t saved_stack_vtype; int stack_start; int stack_size; bool last_emit_was_return_value; scope_t *scope; ASM_T *as; }; emit_t *EXPORT_FUN(new)(mp_uint_t max_num_labels) { emit_t *emit = m_new0(emit_t, 1); emit->as = ASM_NEW(max_num_labels); return emit; } void EXPORT_FUN(free)(emit_t *emit) { ASM_FREE(emit->as, false); m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc); m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc); m_del_obj(emit_t, emit); } STATIC void emit_native_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) { switch (op) { case MP_EMIT_NATIVE_TYPE_ENABLE: emit->do_viper_types = arg1; break; default: { vtype_kind_t type; switch (arg2) { case MP_QSTR_object: type = VTYPE_PYOBJ; break; case MP_QSTR_bool: type = VTYPE_BOOL; break; case MP_QSTR_int: type = VTYPE_INT; break; case MP_QSTR_uint: type = VTYPE_UINT; break; case MP_QSTR_ptr: type = VTYPE_PTR; break; case MP_QSTR_ptr8: type = VTYPE_PTR8; break; case MP_QSTR_ptr16: type = VTYPE_PTR16; break; default: printf("ViperTypeError: unknown type %s\n", qstr_str(arg2)); return; } if (op == MP_EMIT_NATIVE_TYPE_RETURN) { emit->return_vtype = type; } else { assert(arg1 < emit->local_vtype_alloc); emit->local_vtype[arg1] = type; } break; } } } STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope); emit->pass = pass; emit->stack_start = 0; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->scope = scope; // allocate memory for keeping track of the types of locals if (emit->local_vtype_alloc < scope->num_locals) { emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals); emit->local_vtype_alloc = scope->num_locals; } // allocate memory for keeping track of the objects on the stack // XXX don't know stack size on entry, and it should be maximum over all scopes if (emit->stack_info == NULL) { emit->stack_info_alloc = scope->stack_size + 50; emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); } // set default type for return and arguments emit->return_vtype = VTYPE_PYOBJ; for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) { emit->local_vtype[i] = VTYPE_PYOBJ; } // local variables begin unbound, and have unknown type for (mp_uint_t i = emit->scope->num_pos_args; i < emit->local_vtype_alloc; i++) { emit->local_vtype[i] = VTYPE_UNBOUND; } // values on stack begin unbound for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) { emit->stack_info[i].kind = STACK_VALUE; emit->stack_info[i].vtype = VTYPE_UNBOUND; } ASM_START_PASS(emit->as, pass == MP_PASS_EMIT ? ASM_PASS_EMIT : ASM_PASS_COMPUTE); // entry to function int num_locals = 0; if (pass > MP_PASS_SCOPE) { num_locals = scope->num_locals - REG_LOCAL_NUM; if (num_locals < 0) { num_locals = 0; } emit->stack_start = num_locals; num_locals += scope->stack_size; } ASM_ENTRY(emit->as, num_locals); // initialise locals from parameters #if N_X64 for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3); } else if (i == 3) { asm_x64_mov_r64_to_local(emit->as, REG_ARG_4, i - REG_LOCAL_NUM); } else { // TODO not implemented assert(0); } } #elif N_X86 for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_1); } else if (i == 1) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_2); } else if (i == 2) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_3); } else { asm_x86_mov_arg_to_r32(emit->as, i, REG_TEMP0); asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, i - REG_LOCAL_NUM); } } #elif N_THUMB for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3); } else if (i == 3) { asm_thumb_mov_local_reg(emit->as, i - REG_LOCAL_NUM, REG_ARG_4); } else { // TODO not implemented assert(0); } } // TODO don't load r7 if we don't need it asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table); #elif N_ARM for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3); } else if (i == 3) { asm_arm_mov_local_reg(emit->as, i - REG_LOCAL_NUM, REG_ARG_4); } else { // TODO not implemented assert(0); } } // TODO don't load r7 if we don't need it asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table); #else #error not implemented #endif } STATIC void emit_native_end_pass(emit_t *emit) { if (!emit->last_emit_was_return_value) { ASM_EXIT(emit->as); } ASM_END_PASS(emit->as); // check stack is back to zero size if (emit->stack_size != 0) { printf("ERROR: stack size not back to zero; got %d\n", emit->stack_size); } if (emit->pass == MP_PASS_EMIT) { void *f = ASM_GET_CODE(emit->as); mp_uint_t f_len = ASM_GET_CODE_SIZE(emit->as); // compute type signature // note that the lower 2 bits of a vtype are tho correct MP_NATIVE_TYPE_xxx mp_uint_t type_sig = emit->return_vtype & 3; for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) { type_sig |= (emit->local_vtype[i] & 3) << (i * 2 + 2); } mp_emit_glue_assign_native(emit->scope->raw_code, emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, f, f_len, emit->scope->num_pos_args, type_sig); } } STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) { assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); emit->stack_size += stack_size_delta; if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } #ifdef DEBUG_PRINT DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg); } DEBUG_printf("\n"); #endif } STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) { DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta); // If we are adjusting the stack in a positive direction (pushing) then we // need to fill in values for the stack kind and vtype of the newly-pushed // entries. These should be set to "value" (ie not reg or imm) because we // should only need to adjust the stack due to a jump to this part in the // code (and hence we have settled the stack before the jump). for (mp_int_t i = 0; i < delta; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size + i]; si->kind = STACK_VALUE; // TODO we don't know the vtype to use here. At the moment this is a // hack to get the case of multi comparison working. if (delta == 1) { si->vtype = emit->saved_stack_vtype; } else { si->vtype = VTYPE_PYOBJ; } } adjust_stack(emit, delta); } STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) { (void)emit; (void)source_line; } /* STATIC void emit_pre_raw(emit_t *emit, int stack_size_delta) { adjust_stack(emit, stack_size_delta); emit->last_emit_was_return_value = false; } */ // this must be called at start of emit functions STATIC void emit_native_pre(emit_t *emit) { emit->last_emit_was_return_value = false; // settle the stack /* if (regs_needed != 0) { for (int i = 0; i < emit->stack_size; i++) { switch (emit->stack_info[i].kind) { case STACK_VALUE: break; case STACK_REG: // TODO only push reg if in regs_needed emit->stack_info[i].kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(emit->as, emit->stack_info[i].data.u_reg, emit->stack_start + i); break; case STACK_IMM: // don't think we ever need to push imms for settling //ASM_MOV_IMM_TO_LOCAL(emit->last_imm, emit->stack_start + i); break; } } } */ } // depth==0 is top, depth==1 is before top, etc STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) { return &emit->stack_info[emit->stack_size - 1 - depth]; } // depth==0 is top, depth==1 is before top, etc STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) { return peek_stack(emit, depth)->vtype; } // pos=1 is TOS, pos=2 is next, etc // use pos=0 for no skipping STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { skip_stack_pos = emit->stack_size - skip_stack_pos; for (int i = 0; i < emit->stack_size; i++) { if (i != skip_stack_pos) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG && si->data.u_reg == reg_needed) { si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i); } } } } STATIC void need_reg_all(emit_t *emit) { for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i); } } } STATIC void need_stack_settled(emit_t *emit) { DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i); si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i); } } for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_IMM) { DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i); si->kind = STACK_VALUE; ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + i, REG_TEMP0); } } } // pos=1 is TOS, pos=2 is next, etc STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { need_reg_single(emit, reg_dest, pos); stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; *vtype = si->vtype; switch (si->kind) { case STACK_VALUE: ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - pos, reg_dest); break; case STACK_REG: if (si->data.u_reg != reg_dest) { ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg); } break; case STACK_IMM: ASM_MOV_IMM_TO_REG(emit->as, si->data.u_imm, reg_dest); break; } } // does an efficient X=pop(); discard(); push(X) // needs a (non-temp) register in case the poped element was stored in the stack STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) { stack_info_t *si = &emit->stack_info[emit->stack_size - 2]; si[0] = si[1]; if (si->kind == STACK_VALUE) { // if folded element was on the stack we need to put it in a register ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - 1, reg_dest); si->kind = STACK_REG; si->data.u_reg = reg_dest; } adjust_stack(emit, -1); } // If stacked value is in a register and the register is not r1 or r2, then // *reg_dest is set to that register. Otherwise the value is put in *reg_dest. STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) { emit->last_emit_was_return_value = false; stack_info_t *si = peek_stack(emit, 0); if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) { *vtype = si->vtype; *reg_dest = si->data.u_reg; need_reg_single(emit, *reg_dest, 1); } else { emit_access_stack(emit, 1, vtype, *reg_dest); } adjust_stack(emit, -1); } STATIC void emit_pre_pop_discard(emit_t *emit) { emit->last_emit_was_return_value = false; adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { emit->last_emit_was_return_value = false; emit_access_stack(emit, 1, vtype, reg_dest); adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); } STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); emit_pre_pop_reg(emit, vtypec, regc); } STATIC void emit_post(emit_t *emit) { (void)emit; } STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1]; si->vtype = new_vtype; } STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_REG; si->data.u_reg = reg; adjust_stack(emit, 1); } STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_IMM; si->data.u_imm = imm; adjust_stack(emit, 1); } STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); } STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); } STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); emit_post_push_reg(emit, vtyped, regd); } STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) { need_reg_all(emit); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_IMM_TO_REG(emit->as, arg_val, arg_reg); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // the first arg is stored in the code aligned on a mp_uint_t boundary STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val, arg_reg); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) { need_reg_all(emit); ASM_MOV_IMM_TO_REG(emit->as, arg_val1, arg_reg1); ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // the first arg is stored in the code aligned on a mp_uint_t boundary STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2, mp_int_t arg_val3, int arg_reg3) { need_reg_all(emit); ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val1, arg_reg1); ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2); ASM_MOV_IMM_TO_REG(emit->as, arg_val3, arg_reg3); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // vtype of all n_pop objects is VTYPE_PYOBJ // Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack. // If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET. // Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer). STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) { need_reg_all(emit); // First, store any immediate values to their respective place on the stack. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; // must push any imm's to stack // must convert them to VTYPE_PYOBJ for viper code if (si->kind == STACK_IMM) { si->kind = STACK_VALUE; switch (si->vtype) { case VTYPE_PYOBJ: ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + emit->stack_size - 1 - i, reg_dest); break; case VTYPE_BOOL: if (si->data.u_imm == 0) { ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_false, emit->stack_start + emit->stack_size - 1 - i, reg_dest); } else { ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_true, emit->stack_start + emit->stack_size - 1 - i, reg_dest); } si->vtype = VTYPE_PYOBJ; break; case VTYPE_INT: case VTYPE_UINT: ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (si->data.u_imm << 1) | 1, emit->stack_start + emit->stack_size - 1 - i, reg_dest); si->vtype = VTYPE_PYOBJ; break; default: // not handled assert(0); } } // verify that this value is on the stack assert(si->kind == STACK_VALUE); } // Second, convert any non-VTYPE_PYOBJ to that type. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; if (si->vtype != VTYPE_PYOBJ) { mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i; ASM_MOV_LOCAL_TO_REG(emit->as, local_num, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type ASM_MOV_REG_TO_LOCAL(emit->as, REG_RET, local_num); si->vtype = VTYPE_PYOBJ; DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num); } } // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest. adjust_stack(emit, -n_pop); ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest); } // vtype of all n_push objects is VTYPE_PYOBJ STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) { need_reg_all(emit); for (mp_uint_t i = 0; i < n_push; i++) { emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; } ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest); adjust_stack(emit, n_push); } STATIC void emit_native_load_id(emit_t *emit, qstr qst) { emit_common_load_id(emit, &EXPORT_FUN(method_table), emit->scope, qst); } STATIC void emit_native_store_id(emit_t *emit, qstr qst) { emit_common_store_id(emit, &EXPORT_FUN(method_table), emit->scope, qst); } STATIC void emit_native_delete_id(emit_t *emit, qstr qst) { emit_common_delete_id(emit, &EXPORT_FUN(method_table), emit->scope, qst); } STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) { DEBUG_printf("label_assign(" UINT_FMT ")\n", l); emit_native_pre(emit); // need to commit stack because we can jump here from elsewhere need_stack_settled(emit); ASM_LABEL_ASSIGN(emit->as, l); emit_post(emit); } STATIC void emit_native_import_name(emit_t *emit, qstr qst) { DEBUG_printf("import_name %s\n", qstr_str(qst)); vtype_kind_t vtype_fromlist; vtype_kind_t vtype_level; emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); // arg2 = fromlist, arg3 = level assert(vtype_fromlist == VTYPE_PYOBJ); assert(vtype_level == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_from(emit_t *emit, qstr qst) { DEBUG_printf("import_from %s\n", qstr_str(qst)); emit_native_pre(emit); vtype_kind_t vtype_module; emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_star(emit_t *emit) { DEBUG_printf("import_star\n"); vtype_kind_t vtype_module; emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call(emit, MP_F_IMPORT_ALL); emit_post(emit); } STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) { DEBUG_printf("load_const_tok(tok=%u)\n", tok); emit_native_pre(emit); vtype_kind_t vtype; mp_uint_t val; if (emit->do_viper_types) { switch (tok) { case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break; case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break; case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } else { vtype = VTYPE_PYOBJ; switch (tok) { case MP_TOKEN_KW_NONE: val = (mp_uint_t)mp_const_none; break; case MP_TOKEN_KW_FALSE: val = (mp_uint_t)mp_const_false; break; case MP_TOKEN_KW_TRUE: val = (mp_uint_t)mp_const_true; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } emit_post_push_imm(emit, vtype, val); } STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) { DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg); emit_native_pre(emit); if (emit->do_viper_types) { emit_post_push_imm(emit, VTYPE_INT, arg); } else { emit_post_push_imm(emit, VTYPE_PYOBJ, (arg << 1) | 1); } } STATIC void emit_native_load_const_int(emit_t *emit, qstr qst) { DEBUG_printf("load_const_int %s\n", qstr_str(qst)); // for viper: load integer, check fits in 32 bits emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_INT, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_const_dec(emit_t *emit, qstr qst) { // for viper, a float/complex is just a Python object emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_DEC, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_const_str(emit_t *emit, qstr qst, bool bytes) { emit_native_pre(emit); // TODO: Eventually we want to be able to work with raw pointers in viper to // do native array access. For now we just load them as any other object. /* if (emit->do_viper_types) { // not implemented properly // load a pointer to the asciiz string? assert(0); emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst)); } else */ { if (bytes) { emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_BYTES, qst, REG_ARG_1); } else { emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_STR, qst, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_load_const_obj(emit_t *emit, void *obj) { emit_native_pre(emit); need_reg_single(emit, REG_RET, 0); ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, (mp_uint_t)obj, REG_RET); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_null(emit_t *emit) { emit_native_pre(emit); emit_post_push_imm(emit, VTYPE_PYOBJ, 0); } STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); vtype_kind_t vtype = emit->local_vtype[local_num]; if (vtype == VTYPE_UNBOUND) { printf("ViperTypeError: local %s used before type known\n", qstr_str(qst)); } emit_native_pre(emit); #if N_X64 if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_TEMP0, 0); asm_x64_mov_local_to_r64(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0); emit_post_push_reg(emit, vtype, REG_TEMP0); } #elif N_X86 if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_TEMP0, 0); asm_x86_mov_local_to_r32(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0); emit_post_push_reg(emit, vtype, REG_TEMP0); } #elif N_THUMB if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_TEMP0, 0); asm_thumb_mov_reg_local(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM); emit_post_push_reg(emit, vtype, REG_TEMP0); } #elif N_ARM if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_TEMP0, 0); asm_arm_mov_reg_local(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM); emit_post_push_reg(emit, vtype, REG_TEMP0); } #else #error not implemented #endif } STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { // not implemented // in principle could support this quite easily (ldr r0, [r0, #0]) and then get closed over variables! (void)emit; (void)qst; (void)local_num; assert(0); } STATIC void emit_native_load_name(emit_t *emit, qstr qst) { DEBUG_printf("load_name(%s)\n", qstr_str(qst)); emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_LOAD_NAME, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_global(emit_t *emit, qstr qst) { DEBUG_printf("load_global(%s)\n", qstr_str(qst)); emit_native_pre(emit); // check for builtin casting operators if (emit->do_viper_types && qst == MP_QSTR_int) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_INT); } else if (emit->do_viper_types && qst == MP_QSTR_uint) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_UINT); } else if (emit->do_viper_types && qst == MP_QSTR_ptr) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR); } else if (emit->do_viper_types && qst == MP_QSTR_ptr8) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR8); } else if (emit->do_viper_types && qst == MP_QSTR_ptr16) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR16); } else { emit_call_with_imm_arg(emit, MP_F_LOAD_GLOBAL, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_load_attr(emit_t *emit, qstr qst) { // depends on type of subject: // - integer, function, pointer to integers: error // - pointer to structure: get member, quite easy // - Python object: call mp_load_attr, and needs to be typed to convert result vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_method(emit_t *emit, qstr qst) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name } STATIC void emit_native_load_build_class(emit_t *emit) { emit_native_pre(emit); emit_call(emit, MP_F_LOAD_BUILD_CLASS); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_subscr(emit_t *emit) { DEBUG_printf("load_subscr\n"); // need to compile: base[index] // pop: index, base // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python call vtype_kind_t vtype_index; emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); assert(vtype_index == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { // viper load // TODO The different machine architectures have very different // capabilities and requirements for loads, so probably best to // write a completely separate load-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index); switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index) break; } default: printf("ViperTypeError: can't load from type %d\n", vtype_base); } } else { // index is not an immediate vtype_kind_t vtype_index; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] assert(vtype_index == VTYPE_INT); ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory assert(vtype_index == VTYPE_INT); ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index) break; } default: printf("ViperTypeError: can't load from type %d\n", vtype_base); } } emit_post_push_reg(emit, VTYPE_INT, REG_RET); } } STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { vtype_kind_t vtype; #if N_X64 if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); asm_x64_mov_r64_to_local(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM); } #elif N_X86 if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM); } #elif N_THUMB if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); asm_thumb_mov_local_reg(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0); } #elif N_ARM if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); asm_arm_mov_local_reg(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0); } #else #error not implemented #endif emit_post(emit); // check types if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { // first time this local is assigned, so give it a type of the object stored in it emit->local_vtype[local_num] = vtype; } else if (emit->local_vtype[local_num] != vtype) { // type of local is not the same as object stored in it printf("ViperTypeError: type mismatch, local %s has type %d but source object has type %d\n", qstr_str(qst), emit->local_vtype[local_num], vtype); } } STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { // not implemented (void)emit; (void)qst; (void)local_num; assert(0); } STATIC void emit_native_store_name(emit_t *emit, qstr qst) { // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type)) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_STORE_NAME, qst, REG_ARG_1); // arg1 = name emit_post(emit); } STATIC void emit_native_store_global(emit_t *emit, qstr qst) { vtype_kind_t vtype = peek_vtype(emit, 0); if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_2); } else { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } emit_call_with_imm_arg(emit, MP_F_STORE_GLOBAL, qst, REG_ARG_1); // arg1 = name emit_post(emit); } STATIC void emit_native_store_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base, vtype_val; emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value assert(vtype_base == VTYPE_PYOBJ); assert(vtype_val == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post(emit); } STATIC void emit_native_store_subscr(emit_t *emit) { DEBUG_printf("store_subscr\n"); // need to compile: base[index] = value // pop: index, base, value // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python call vtype_kind_t vtype_index, vtype_value; emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); assert(vtype_index == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); emit_call(emit, MP_F_OBJ_SUBSCR); } else { // viper store // TODO The different machine architectures have very different // capabilities and requirements for stores, so probably best to // write a completely separate store-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index vtype_kind_t vtype_value; int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value); #if N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index); #endif switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index); #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index); #if N_ARM asm_arm_strh_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index) break; } default: printf("ViperTypeError: can't store to type %d\n", vtype_base); } } else { // index is not an immediate vtype_kind_t vtype_index, vtype_value; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); #if N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index); #endif switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] assert(vtype_index == VTYPE_INT); #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory assert(vtype_index == VTYPE_INT); #if N_ARM asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index) break; } default: printf("ViperTypeError: can't store to type %d\n", vtype_base); } } } } STATIC void emit_native_delete_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { // TODO implement me! // could support for Python types, just set to None (so GC can reclaim it) // local is automatically deleted for exception block "as" var, and the message // breaks tests. //mp_emitter_warning(emit->pass, "Native codegeneration doesn't support deleting local"); (void)emit; (void)qst; (void)local_num; } STATIC void emit_native_delete_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { // TODO implement me! (void)emit; (void)qst; (void)local_num; } STATIC void emit_native_delete_name(emit_t *emit, qstr qst) { emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_DELETE_NAME, qst, REG_ARG_1); emit_post(emit); } STATIC void emit_native_delete_global(emit_t *emit, qstr qst) { emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_DELETE_GLOBAL, qst, REG_ARG_1); emit_post(emit); } STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_2_imm_args(emit, MP_F_STORE_ATTR, qst, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg2 = attribute name, arg3 = value (null for delete) emit_post(emit); } STATIC void emit_native_delete_subscr(emit_t *emit) { vtype_kind_t vtype_index, vtype_base; emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base assert(vtype_index == VTYPE_PYOBJ); assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); } STATIC void emit_native_dup_top(emit_t *emit) { DEBUG_printf("dup_top\n"); vtype_kind_t vtype; int reg = REG_TEMP0; emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1); emit_post_push_reg_reg(emit, vtype, reg, vtype, reg); } STATIC void emit_native_dup_top_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); } STATIC void emit_native_pop_top(emit_t *emit) { DEBUG_printf("pop_top\n"); emit_pre_pop_discard(emit); emit_post(emit); } STATIC void emit_native_rot_two(emit_t *emit) { DEBUG_printf("rot_two\n"); vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); } STATIC void emit_native_rot_three(emit_t *emit) { DEBUG_printf("rot_three\n"); vtype_kind_t vtype0, vtype1, vtype2; emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); } STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) { DEBUG_printf("jump(label=" UINT_FMT ")\n", label); emit_native_pre(emit); // need to commit stack because we are jumping elsewhere need_stack_settled(emit); ASM_JUMP(emit->as, label); emit_post(emit); } STATIC void emit_native_jump_helper(emit_t *emit, bool pop) { vtype_kind_t vtype = peek_vtype(emit, 0); switch (vtype) { case VTYPE_PYOBJ: emit_pre_pop_reg(emit, &vtype, REG_ARG_1); if (!pop) { adjust_stack(emit, 1); } emit_call(emit, MP_F_OBJ_IS_TRUE); break; case VTYPE_BOOL: case VTYPE_INT: case VTYPE_UINT: emit_pre_pop_reg(emit, &vtype, REG_RET); if (!pop) { adjust_stack(emit, 1); } break; default: printf("ViperTypeError: expecting a bool or pyobj, got %d\n", vtype); assert(0); } // For non-pop need to save the vtype so that emit_native_adjust_stack_size // can use it. This is a bit of a hack. if (!pop) { emit->saved_stack_vtype = vtype; } // need to commit stack because we may jump elsewhere need_stack_settled(emit); } STATIC void emit_native_pop_jump_if_true(emit_t *emit, mp_uint_t label) { DEBUG_printf("pop_jump_if_true(label=" UINT_FMT ")\n", label); emit_native_jump_helper(emit, true); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); emit_post(emit); } STATIC void emit_native_pop_jump_if_false(emit_t *emit, mp_uint_t label) { DEBUG_printf("pop_jump_if_false(label=" UINT_FMT ")\n", label); emit_native_jump_helper(emit, true); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label); emit_post(emit); } STATIC void emit_native_jump_if_true_or_pop(emit_t *emit, mp_uint_t label) { DEBUG_printf("jump_if_true_or_pop(label=" UINT_FMT ")\n", label); emit_native_jump_helper(emit, false); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); adjust_stack(emit, -1); emit_post(emit); } STATIC void emit_native_jump_if_false_or_pop(emit_t *emit, mp_uint_t label) { DEBUG_printf("jump_if_false_or_pop(label=" UINT_FMT ")\n", label); emit_native_jump_helper(emit, false); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label); adjust_stack(emit, -1); emit_post(emit); } STATIC void emit_native_break_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { (void)except_depth; emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); // TODO properly } STATIC void emit_native_continue_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { (void)except_depth; emit_native_jump(emit, label); // TODO properly } STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) { // not supported, or could be with runtime call (void)emit; (void)label; assert(0); } STATIC void emit_native_with_cleanup(emit_t *emit) { (void)emit; assert(0); } STATIC void emit_native_setup_except(emit_t *emit, mp_uint_t label) { emit_native_pre(emit); // need to commit stack because we may jump elsewhere need_stack_settled(emit); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf emit_call(emit, MP_F_NLR_PUSH); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); emit_post(emit); } STATIC void emit_native_setup_finally(emit_t *emit, mp_uint_t label) { emit_native_setup_except(emit, label); } STATIC void emit_native_end_finally(emit_t *emit) { // logic: // exc = pop_stack // if exc == None: pass // else: raise exc // the check if exc is None is done in the MP_F_NATIVE_RAISE stub vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call(emit, MP_F_NATIVE_RAISE); emit_post(emit); } STATIC void emit_native_get_iter(emit_t *emit) { // perhaps the difficult one, as we want to rewrite for loops using native code // in cases where we iterate over a Python object, can we use normal runtime calls? vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); emit_call(emit, MP_F_GETITER); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) { emit_native_pre(emit); vtype_kind_t vtype; emit_access_stack(emit, 1, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); emit_call(emit, MP_F_ITERNEXT); ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)MP_OBJ_STOP_ITERATION, REG_TEMP1); ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_for_iter_end(emit_t *emit) { // adjust stack counter (we get here from for_iter ending, which popped the value for us) emit_native_pre(emit); adjust_stack(emit, -1); emit_post(emit); } STATIC void emit_native_pop_block(emit_t *emit) { emit_native_pre(emit); emit_call(emit, MP_F_NLR_POP); adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t))); emit_post(emit); } STATIC void emit_native_pop_except(emit_t *emit) { (void)emit; /* emit_native_pre(emit); emit_call(emit, MP_F_NLR_POP); adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t))); emit_post(emit); */ } STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); if (op == MP_UNARY_OP_NOT) { // we need to synthesise this operation by converting to bool first emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_BOOL, REG_ARG_1); ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) { DEBUG_printf("binary_op(" UINT_FMT ")\n", op); vtype_kind_t vtype_lhs = peek_vtype(emit, 1); vtype_kind_t vtype_rhs = peek_vtype(emit, 0); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { #if N_X64 || N_X86 // special cases for x86 and shifting if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT || op == MP_BINARY_OP_RSHIFT || op == MP_BINARY_OP_INPLACE_RSHIFT) { #if N_X64 emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET); #else emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET); #endif if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) { ASM_LSL_REG(emit->as, REG_RET); } else { ASM_ASR_REG(emit->as, REG_RET); } emit_post_push_reg(emit, VTYPE_INT, REG_RET); return; } #endif int reg_rhs = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2); emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2); if (0) { // dummy #if !(N_X64 || N_X86) } else if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) { ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_RSHIFT || op == MP_BINARY_OP_INPLACE_RSHIFT) { ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); #endif } else if (op == MP_BINARY_OP_OR || op == MP_BINARY_OP_INPLACE_OR) { ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_XOR || op == MP_BINARY_OP_INPLACE_XOR) { ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_AND || op == MP_BINARY_OP_INPLACE_AND) { ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_ADD || op == MP_BINARY_OP_INPLACE_ADD) { ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_SUBTRACT || op == MP_BINARY_OP_INPLACE_SUBTRACT) { ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) { // comparison ops are (in enum order): // MP_BINARY_OP_LESS // MP_BINARY_OP_MORE // MP_BINARY_OP_EQUAL // MP_BINARY_OP_LESS_EQUAL // MP_BINARY_OP_MORE_EQUAL // MP_BINARY_OP_NOT_EQUAL need_reg_single(emit, REG_RET, 0); #if N_X64 asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET); asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2); static byte ops[6] = { ASM_X64_CC_JL, ASM_X64_CC_JG, ASM_X64_CC_JE, ASM_X64_CC_JLE, ASM_X64_CC_JGE, ASM_X64_CC_JNE, }; asm_x64_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET); #elif N_X86 asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET); asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2); static byte ops[6] = { ASM_X86_CC_JL, ASM_X86_CC_JG, ASM_X86_CC_JE, ASM_X86_CC_JLE, ASM_X86_CC_JGE, ASM_X86_CC_JNE, }; asm_x86_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET); #elif N_THUMB asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs); static uint16_t ops[6] = { ASM_THUMB_OP_ITE_GE, ASM_THUMB_OP_ITE_GT, ASM_THUMB_OP_ITE_EQ, ASM_THUMB_OP_ITE_GT, ASM_THUMB_OP_ITE_GE, ASM_THUMB_OP_ITE_EQ, }; static byte ret[6] = { 0, 1, 1, 0, 1, 0, }; asm_thumb_op16(emit->as, ops[op - MP_BINARY_OP_LESS]); asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS]); asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS] ^ 1); #elif N_ARM asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs); static uint ccs[6] = { ASM_ARM_CC_LT, ASM_ARM_CC_GT, ASM_ARM_CC_EQ, ASM_ARM_CC_LE, ASM_ARM_CC_GE, ASM_ARM_CC_NE, }; asm_arm_setcc_reg(emit->as, REG_RET, ccs[op - MP_BINARY_OP_LESS]); #else #error not implemented #endif emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); } else { // TODO other ops not yet implemented assert(0); } } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); bool invert = false; if (op == MP_BINARY_OP_NOT_IN) { invert = true; op = MP_BINARY_OP_IN; } else if (op == MP_BINARY_OP_IS_NOT) { invert = true; op = MP_BINARY_OP_IS; } emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1); if (invert) { ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { printf("ViperTypeError: can't do binary op between types %d and %d\n", vtype_lhs, vtype_rhs); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_build_tuple(emit_t *emit, mp_uint_t n_args) { // for viper: call runtime, with types of args // if wrapped in byte_array, or something, allocates memory and fills it emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple } STATIC void emit_native_build_list(emit_t *emit, mp_uint_t n_args) { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items emit_call_with_imm_arg(emit, MP_F_BUILD_LIST, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list } STATIC void emit_native_list_append(emit_t *emit, mp_uint_t list_index) { // only used in list comprehension vtype_kind_t vtype_list, vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); emit_access_stack(emit, list_index, &vtype_list, REG_ARG_1); assert(vtype_list == VTYPE_PYOBJ); assert(vtype_item == VTYPE_PYOBJ); emit_call(emit, MP_F_LIST_APPEND); emit_post(emit); } STATIC void emit_native_build_map(emit_t *emit, mp_uint_t n_args) { emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_BUILD_MAP, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map } STATIC void emit_native_store_map(emit_t *emit) { vtype_kind_t vtype_key, vtype_value, vtype_map; emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); assert(vtype_map == VTYPE_PYOBJ); emit_call(emit, MP_F_STORE_MAP); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map } STATIC void emit_native_map_add(emit_t *emit, mp_uint_t map_index) { // only used in list comprehension vtype_kind_t vtype_map, vtype_key, vtype_value; emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); emit_access_stack(emit, map_index, &vtype_map, REG_ARG_1); assert(vtype_map == VTYPE_PYOBJ); assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); emit_call(emit, MP_F_STORE_MAP); emit_post(emit); } #if MICROPY_PY_BUILTINS_SET STATIC void emit_native_build_set(emit_t *emit, mp_uint_t n_args) { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items emit_call_with_imm_arg(emit, MP_F_BUILD_SET, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set } STATIC void emit_native_set_add(emit_t *emit, mp_uint_t set_index) { // only used in set comprehension vtype_kind_t vtype_set, vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); emit_access_stack(emit, set_index, &vtype_set, REG_ARG_1); assert(vtype_set == VTYPE_PYOBJ); assert(vtype_item == VTYPE_PYOBJ); emit_call(emit, MP_F_STORE_SET); emit_post(emit); } #endif #if MICROPY_PY_BUILTINS_SLICE STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("build_slice %d\n", n_args); if (n_args == 2) { vtype_kind_t vtype_start, vtype_stop; emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, (mp_uint_t)mp_const_none, REG_ARG_3); // arg3 = step emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { assert(n_args == 3); vtype_kind_t vtype_start, vtype_stop, vtype_step; emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); assert(vtype_step == VTYPE_PYOBJ); emit_call(emit, MP_F_NEW_SLICE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } #endif STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("unpack_sequence %d\n", n_args); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args } STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { DEBUG_printf("unpack_ex %d %d\n", n_left, n_right); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right } STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them emit_native_pre(emit); if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1, (mp_uint_t)MP_OBJ_NULL, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); } else { vtype_kind_t vtype_def_tuple, vtype_def_dict; emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2); assert(vtype_def_tuple == VTYPE_PYOBJ); assert(vtype_def_dict == VTYPE_PYOBJ); emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { (void)emit; (void)scope; (void)n_closed_over; (void)n_pos_defaults; (void)n_kw_defaults; assert(0); } STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags); // TODO: in viper mode, call special runtime routine with type info for args, // and wanted type info for return, to remove need for boxing/unboxing assert(!star_flags); emit_native_pre(emit); vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword); if (vtype_fun == VTYPE_BUILTIN_CAST) { // casting operator assert(n_positional == 1 && n_keyword == 0); DEBUG_printf(" cast to %d\n", vtype_fun); vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm; switch (peek_vtype(emit, 0)) { case VTYPE_PYOBJ: { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_pre_pop_discard(emit); emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, MP_NATIVE_TYPE_UINT, REG_ARG_2); // arg2 = type emit_post_push_reg(emit, vtype_cast, REG_RET); break; } case VTYPE_BOOL: case VTYPE_INT: case VTYPE_UINT: case VTYPE_PTR: case VTYPE_PTR8: case VTYPE_PTR16: case VTYPE_PTR_NONE: emit_fold_stack_top(emit, REG_ARG_1); emit_post_top_set_vtype(emit, vtype_cast); break; default: assert(!"TODO: convert obj to int"); } } else { if (n_positional != 0 || n_keyword != 0) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args } emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function assert(vtype_fun == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { assert(!star_flags); emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_return_value(emit_t *emit) { DEBUG_printf("return_value\n"); if (emit->do_viper_types) { if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) { emit_pre_pop_discard(emit); if (emit->return_vtype == VTYPE_PYOBJ) { ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)mp_const_none, REG_RET); } else { ASM_MOV_IMM_TO_REG(emit->as, 0, REG_RET); } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); if (vtype != emit->return_vtype) { printf("ViperTypeError: incompatible return type\n"); } } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); assert(vtype == VTYPE_PYOBJ); } emit->last_emit_was_return_value = true; //ASM_BREAK_POINT(emit->as); // to insert a break-point for debugging ASM_EXIT(emit->as); } STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) { assert(n_args == 1); vtype_kind_t vtype_exc; emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise if (vtype_exc != VTYPE_PYOBJ) { printf("ViperTypeError: must raise an object\n"); } // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type)) emit_call(emit, MP_F_NATIVE_RAISE); } STATIC void emit_native_yield_value(emit_t *emit) { // not supported (for now) (void)emit; assert(0); } STATIC void emit_native_yield_from(emit_t *emit) { // not supported (for now) (void)emit; assert(0); } STATIC void emit_native_start_except_handler(emit_t *emit) { // This instruction follows an nlr_pop, so the stack counter is back to zero, when really // it should be up by a whole nlr_buf_t. We then want to pop the nlr_buf_t here, but save // the first 2 elements, so we can get the thrown value. adjust_stack(emit, 2); vtype_kind_t vtype_nlr; emit_pre_pop_reg(emit, &vtype_nlr, REG_ARG_1); // get the thrown value emit_pre_pop_discard(emit); // discard the linked-list pointer in the nlr_buf emit_post_push_reg_reg_reg(emit, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1); // push the 3 exception items } STATIC void emit_native_end_except_handler(emit_t *emit) { adjust_stack(emit, -2); } const emit_method_table_t EXPORT_FUN(method_table) = { emit_native_set_native_type, emit_native_start_pass, emit_native_end_pass, emit_native_last_emit_was_return_value, emit_native_adjust_stack_size, emit_native_set_source_line, emit_native_load_id, emit_native_store_id, emit_native_delete_id, emit_native_label_assign, emit_native_import_name, emit_native_import_from, emit_native_import_star, emit_native_load_const_tok, emit_native_load_const_small_int, emit_native_load_const_int, emit_native_load_const_dec, emit_native_load_const_str, emit_native_load_const_obj, emit_native_load_null, emit_native_load_fast, emit_native_load_deref, emit_native_load_name, emit_native_load_global, emit_native_load_attr, emit_native_load_method, emit_native_load_build_class, emit_native_load_subscr, emit_native_store_fast, emit_native_store_deref, emit_native_store_name, emit_native_store_global, emit_native_store_attr, emit_native_store_subscr, emit_native_delete_fast, emit_native_delete_deref, emit_native_delete_name, emit_native_delete_global, emit_native_delete_attr, emit_native_delete_subscr, emit_native_dup_top, emit_native_dup_top_two, emit_native_pop_top, emit_native_rot_two, emit_native_rot_three, emit_native_jump, emit_native_pop_jump_if_true, emit_native_pop_jump_if_false, emit_native_jump_if_true_or_pop, emit_native_jump_if_false_or_pop, emit_native_break_loop, emit_native_continue_loop, emit_native_setup_with, emit_native_with_cleanup, emit_native_setup_except, emit_native_setup_finally, emit_native_end_finally, emit_native_get_iter, emit_native_for_iter, emit_native_for_iter_end, emit_native_pop_block, emit_native_pop_except, emit_native_unary_op, emit_native_binary_op, emit_native_build_tuple, emit_native_build_list, emit_native_list_append, emit_native_build_map, emit_native_store_map, emit_native_map_add, #if MICROPY_PY_BUILTINS_SET emit_native_build_set, emit_native_set_add, #endif #if MICROPY_PY_BUILTINS_SLICE emit_native_build_slice, #endif emit_native_unpack_sequence, emit_native_unpack_ex, emit_native_make_function, emit_native_make_closure, emit_native_call_function, emit_native_call_method, emit_native_return_value, emit_native_raise_varargs, emit_native_yield_value, emit_native_yield_from, emit_native_start_except_handler, emit_native_end_except_handler, }; #endif