/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2017 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/builtin.h" #include "py/runtime.h" #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH #include // M_PI is not part of the math.h standard and may not be defined // And by defining our own we can ensure it uses the correct const format. #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) #define MP_PI_4 MICROPY_FLOAT_CONST(0.78539816339744830962) #define MP_3_PI_4 MICROPY_FLOAT_CONST(2.35619449019234492885) static NORETURN void math_error(void) { mp_raise_ValueError(MP_ERROR_TEXT("math domain error")); } static mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) { mp_float_t x = mp_obj_get_float(x_obj); mp_float_t ans = f(x); if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) { math_error(); } return mp_obj_new_float(ans); } static mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) { mp_float_t x = mp_obj_get_float(x_obj); mp_float_t y = mp_obj_get_float(y_obj); mp_float_t ans = f(x, y); if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x) && !isinf(y))) { math_error(); } return mp_obj_new_float(ans); } #define MATH_FUN_1(py_name, c_name) \ static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \ return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \ } \ static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_1_TO_BOOL(py_name, c_name) \ static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_1_TO_INT(py_name, c_name) \ static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_2(py_name, c_name) \ static mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \ } \ static MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_2_FLT_INT(py_name, c_name) \ static mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \ return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \ } \ static MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name); #if MP_NEED_LOG2 #undef log2 #undef log2f // 1.442695040888963407354163704 is 1/_M_LN2 mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) { return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704); } #endif // sqrt(x): returns the square root of x MATH_FUN_1(sqrt, sqrt) // pow(x, y): returns x to the power of y #if MICROPY_PY_MATH_POW_FIX_NAN mp_float_t pow_func(mp_float_t x, mp_float_t y) { // pow(base, 0) returns 1 for any base, even when base is NaN // pow(+1, exponent) returns 1 for any exponent, even when exponent is NaN if (x == MICROPY_FLOAT_CONST(1.0) || y == MICROPY_FLOAT_CONST(0.0)) { return MICROPY_FLOAT_CONST(1.0); } return MICROPY_FLOAT_C_FUN(pow)(x, y); } MATH_FUN_2(pow, pow_func) #else MATH_FUN_2(pow, pow) #endif // exp(x) MATH_FUN_1(exp, exp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS // expm1(x) MATH_FUN_1(expm1, expm1) // log2(x) MATH_FUN_1(log2, log2) // log10(x) MATH_FUN_1(log10, log10) // cosh(x) MATH_FUN_1(cosh, cosh) // sinh(x) MATH_FUN_1(sinh, sinh) // tanh(x) MATH_FUN_1(tanh, tanh) // acosh(x) MATH_FUN_1(acosh, acosh) // asinh(x) MATH_FUN_1(asinh, asinh) // atanh(x) MATH_FUN_1(atanh, atanh) #endif // cos(x) MATH_FUN_1(cos, cos) // sin(x) MATH_FUN_1(sin, sin) // tan(x) MATH_FUN_1(tan, tan) // acos(x) MATH_FUN_1(acos, acos) // asin(x) MATH_FUN_1(asin, asin) // atan(x) MATH_FUN_1(atan, atan) // atan2(y, x) #if MICROPY_PY_MATH_ATAN2_FIX_INFNAN mp_float_t atan2_func(mp_float_t x, mp_float_t y) { if (isinf(x) && isinf(y)) { return copysign(y < 0 ? MP_3_PI_4 : MP_PI_4, x); } return atan2(x, y); } MATH_FUN_2(atan2, atan2_func) #else MATH_FUN_2(atan2, atan2) #endif // ceil(x) MATH_FUN_1_TO_INT(ceil, ceil) // copysign(x, y) static mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) { return MICROPY_FLOAT_C_FUN(copysign)(x, y); } MATH_FUN_2(copysign, copysign_func) // fabs(x) static mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) { return MICROPY_FLOAT_C_FUN(fabs)(x); } MATH_FUN_1(fabs, fabs_func) // floor(x) MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float // fmod(x, y) #if MICROPY_PY_MATH_FMOD_FIX_INFNAN mp_float_t fmod_func(mp_float_t x, mp_float_t y) { return (!isinf(x) && isinf(y)) ? x : fmod(x, y); } MATH_FUN_2(fmod, fmod_func) #else MATH_FUN_2(fmod, fmod) #endif // isfinite(x) MATH_FUN_1_TO_BOOL(isfinite, isfinite) // isinf(x) MATH_FUN_1_TO_BOOL(isinf, isinf) // isnan(x) MATH_FUN_1_TO_BOOL(isnan, isnan) // trunc(x) MATH_FUN_1_TO_INT(trunc, trunc) // ldexp(x, exp) MATH_FUN_2_FLT_INT(ldexp, ldexp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS // erf(x): return the error function of x MATH_FUN_1(erf, erf) // erfc(x): return the complementary error function of x MATH_FUN_1(erfc, erfc) // gamma(x): return the gamma function of x #if MICROPY_PY_MATH_GAMMA_FIX_NEGINF static mp_float_t MICROPY_FLOAT_C_FUN(tgamma_func)(mp_float_t x) { if (isinf(x) && x < 0) { math_error(); } return MICROPY_FLOAT_C_FUN(tgamma)(x); } MATH_FUN_1(gamma, tgamma_func) #else MATH_FUN_1(gamma, tgamma) #endif // lgamma(x): return the natural logarithm of the gamma function of x MATH_FUN_1(lgamma, lgamma) #endif // TODO: fsum #if MICROPY_PY_MATH_ISCLOSE static mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_rel_tol, ARG_abs_tol }; static const mp_arg_t allowed_args[] = { {MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}}, {MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}}, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); const mp_float_t a = mp_obj_get_float(pos_args[0]); const mp_float_t b = mp_obj_get_float(pos_args[1]); const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL ? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj); const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj); if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) { math_error(); } if (a == b) { return mp_const_true; } const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b); if (isinf(difference)) { // Either a or b is inf return mp_const_false; } if ((difference <= abs_tol) || (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) || (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) { return mp_const_true; } return mp_const_false; } MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose); #endif // Function that takes a variable number of arguments // log(x[, base]) static mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) { mp_float_t x = mp_obj_get_float(args[0]); if (x <= (mp_float_t)0.0) { math_error(); } mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x); if (n_args == 1) { return mp_obj_new_float(l); } else { mp_float_t base = mp_obj_get_float(args[1]); if (base <= (mp_float_t)0.0) { math_error(); } else if (base == (mp_float_t)1.0) { mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero")); } return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base)); } } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); // Functions that return a tuple // frexp(x): converts a floating-point number to fractional and integral components static mp_obj_t mp_math_frexp(mp_obj_t x_obj) { int int_exponent = 0; mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(significand); tuple[1] = mp_obj_new_int(int_exponent); return mp_obj_new_tuple(2, tuple); } static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); // modf(x) static mp_obj_t mp_math_modf(mp_obj_t x_obj) { mp_float_t int_part = 0.0; mp_float_t x = mp_obj_get_float(x_obj); mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(x, &int_part); #if MICROPY_PY_MATH_MODF_FIX_NEGZERO if (fractional_part == MICROPY_FLOAT_CONST(0.0)) { fractional_part = copysign(fractional_part, x); } #endif mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(fractional_part); tuple[1] = mp_obj_new_float(int_part); return mp_obj_new_tuple(2, tuple); } static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); // Angular conversions // radians(x) static mp_obj_t mp_math_radians(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0))); } static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); // degrees(x) static mp_obj_t mp_math_degrees(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI)); } static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); #if MICROPY_PY_MATH_FACTORIAL #if MICROPY_OPT_MATH_FACTORIAL // factorial(x): slightly efficient recursive implementation static mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) { if (start == end) { return mp_obj_new_int(start); } else if (end - start == 1) { return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end)); } else if (end - start == 2) { mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start); mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1); mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end); mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle); return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right); } else { mp_uint_t middle = start + ((end - start) >> 1); mp_obj_t left = mp_math_factorial_inner(start, middle); mp_obj_t right = mp_math_factorial_inner(middle + 1, end); return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right); } } static mp_obj_t mp_math_factorial(mp_obj_t x_obj) { mp_int_t max = mp_obj_get_int(x_obj); if (max < 0) { mp_raise_ValueError(MP_ERROR_TEXT("negative factorial")); } else if (max == 0) { return MP_OBJ_NEW_SMALL_INT(1); } return mp_math_factorial_inner(1, max); } #else // factorial(x): squared difference implementation // based on http://www.luschny.de/math/factorial/index.html static mp_obj_t mp_math_factorial(mp_obj_t x_obj) { mp_int_t max = mp_obj_get_int(x_obj); if (max < 0) { mp_raise_ValueError(MP_ERROR_TEXT("negative factorial")); } else if (max <= 1) { return MP_OBJ_NEW_SMALL_INT(1); } mp_int_t h = max >> 1; mp_int_t q = h * h; mp_int_t r = q << 1; if (max & 1) { r *= max; } mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r); for (mp_int_t num = 1; num < max - 2; num += 2) { q -= num; prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q)); } return prod; } #endif static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial); #endif static const mp_rom_map_elem_t mp_module_math_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, #if MICROPY_PY_MATH_CONSTANTS { MP_ROM_QSTR(MP_QSTR_tau), mp_const_float_tau }, { MP_ROM_QSTR(MP_QSTR_inf), mp_const_float_inf }, { MP_ROM_QSTR(MP_QSTR_nan), mp_const_float_nan }, #endif { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) }, { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) }, { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) }, { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) }, { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) }, { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) }, { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) }, { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) }, { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) }, { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) }, { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) }, { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) }, { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) }, { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) }, { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) }, { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) }, { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) }, { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) }, { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) }, { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) }, { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) }, { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) }, { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) }, { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) }, { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) }, { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) }, { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) }, #if MICROPY_PY_MATH_ISCLOSE { MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, #if MICROPY_PY_MATH_FACTORIAL { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) }, #endif #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) }, { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) }, #endif }; static MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); const mp_obj_module_t mp_module_math = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_math_globals, }; MP_REGISTER_MODULE(MP_QSTR_math, mp_module_math); #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH