#include #include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "lexer.h" #include "lexermemzip.h" #include "parse.h" #include "obj.h" #include "compile.h" #include "runtime0.h" #include "runtime.h" #include "repl.h" #include "servo.h" #include "usb.h" #include "gc.h" #include "led.h" #include "Arduino.h" extern uint32_t _heap_start; bool do_file(const char *filename); void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_BUILTIN, 1); delay(250); led_state(PYB_LED_BUILTIN, 0); delay(250); } } static const char *help_text = "Welcome to Micro Python!\n\n" "This is a *very* early version of Micro Python and has minimal functionality.\n\n" "Specific commands for the board:\n" " pyb.info() -- print some general information\n" " pyb.gc() -- run the garbage collector\n" " pyb.delay() -- wait for n milliseconds\n" " pyb.Led() -- create Led object for LED n (n=0)\n" " Led methods: on(), off()\n" " pyb.gpio() -- read gpio pin\n" " pyb.gpio(, ) -- set gpio pin\n" #if 0 " pyb.Servo() -- create Servo object for servo n (n=1,2,3,4)\n" " Servo methods: angle()\n" " pyb.switch() -- return True/False if switch pressed or not\n" " pyb.accel() -- get accelerometer values\n" " pyb.rand() -- get a 16-bit random number\n" #endif ; mp_obj_t pyb_analog_read(mp_obj_t pin_obj) { uint pin = mp_obj_get_int(pin_obj); int val = analogRead(pin); return MP_OBJ_NEW_SMALL_INT(val); } mp_obj_t pyb_analog_write(mp_obj_t pin_obj, mp_obj_t val_obj) { uint pin = mp_obj_get_int(pin_obj); int val = mp_obj_get_int(val_obj); analogWrite(pin, val); return mp_const_none; } mp_obj_t pyb_analog_write_resolution(mp_obj_t res_obj) { int res = mp_obj_get_int(res_obj); analogWriteResolution(res); return mp_const_none; } mp_obj_t pyb_analog_write_frequency(mp_obj_t pin_obj, mp_obj_t freq_obj) { uint pin = mp_obj_get_int(pin_obj); int freq = mp_obj_get_int(freq_obj); analogWriteFrequency(pin, freq); return mp_const_none; } // get some help about available functions static mp_obj_t pyb_help(void) { printf("%s", help_text); return mp_const_none; } // get lots of info about the board static mp_obj_t pyb_info(void) { // get and print unique id; 96 bits { byte *id = (byte*)0x40048058; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM); // to print info about memory { extern void *_sdata; extern void *_edata; extern void *_sbss; extern void *_ebss; extern void *_estack; extern void *_etext; printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_etext=%p\n", &_etext); printf("_heap_start=%p\n", &_heap_start); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" %lu total\n", info.total); printf(" %lu used %lu free\n", info.used, info.free); printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block); } #if 0 // free space on flash { DWORD nclst; FATFS *fatfs; f_getfree("0:", &nclst, &fatfs); printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); } #endif return mp_const_none; } #define RAM_START (0x1FFF8000) // fixed for chip #define HEAP_END (0x20006000) // tunable #define RAM_END (0x20008000) // fixed for chip void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end); void gc_collect(void) { uint32_t start = micros(); gc_collect_start(); gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4); machine_uint_t regs[10]; gc_helper_get_regs_and_clean_stack(regs, HEAP_END); gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack gc_collect_end(); uint32_t ticks = micros() - start; // TODO implement a function that does this properly if (0) { // print GC info gc_info_t info; gc_info(&info); printf("GC@%lu %luus\n", start, ticks); printf(" %lu total\n", info.total); printf(" %lu used %lu free\n", info.used, info.free); printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block); } } mp_obj_t pyb_gc(void) { gc_collect(); return mp_const_none; } mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) { //assert(1 <= n_args && n_args <= 2); uint pin = mp_obj_get_int(args[0]); if (pin > CORE_NUM_DIGITAL) { goto pin_error; } if (n_args == 1) { // get pin pinMode(pin, INPUT); return MP_OBJ_NEW_SMALL_INT(digitalRead(pin)); } // set pin pinMode(pin, OUTPUT); digitalWrite(pin, mp_obj_is_true(args[1])); return mp_const_none; pin_error: nlr_raise(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "pin %d does not exist", pin)); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio); #if 0 mp_obj_t pyb_hid_send_report(mp_obj_t arg) { mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4); uint8_t data[4]; data[0] = mp_obj_get_int(items[0]); data[1] = mp_obj_get_int(items[1]); data[2] = mp_obj_get_int(items[2]); data[3] = mp_obj_get_int(items[3]); usb_hid_send_report(data); return mp_const_none; } #endif static mp_obj_t pyb_config_source_dir = MP_OBJ_NULL; static mp_obj_t pyb_config_main = MP_OBJ_NULL; mp_obj_t pyb_source_dir(mp_obj_t source_dir) { if (MP_OBJ_IS_STR(source_dir)) { pyb_config_source_dir = source_dir; printf("source_dir = '"); mp_obj_print(source_dir, PRINT_STR); printf("'\n"); } return mp_const_none; } mp_obj_t pyb_main(mp_obj_t main) { if (MP_OBJ_IS_STR(main)) { pyb_config_main = main; printf("main = '"); mp_obj_print(main, PRINT_STR); printf("'\n"); } return mp_const_none; } mp_obj_t pyb_delay(mp_obj_t count) { delay(mp_obj_get_int(count)); return mp_const_none; } mp_obj_t pyb_led(mp_obj_t state) { led_state(PYB_LED_BUILTIN, mp_obj_is_true(state)); return state; } mp_obj_t pyb_run(mp_obj_t filename_obj) { const char *filename = qstr_str(mp_obj_str_get_qstr(filename_obj)); do_file(filename); return mp_const_none; } char *strdup(const char *str) { uint32_t len = strlen(str); char *s2 = m_new(char, len + 1); memcpy(s2, str, len); s2[len] = 0; return s2; } #define READLINE_HIST_SIZE (8) static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}; void stdout_tx_str(const char *str) { // usart_tx_str(str); usb_vcp_send_str(str); } int readline(vstr_t *line, const char *prompt) { stdout_tx_str(prompt); int len = vstr_len(line); int escape = 0; int hist_num = 0; for (;;) { char c; for (;;) { if (usb_vcp_rx_any() != 0) { c = usb_vcp_rx_get(); break; #if 0 } else if (usart_rx_any()) { c = usart_rx_char(); break; #endif } //delay(1); //if (storage_needs_flush()) { // storage_flush(); //} } if (escape == 0) { if (c == 4 && vstr_len(line) == len) { return 0; } else if (c == '\r') { stdout_tx_str("\r\n"); for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) { readline_hist[i] = readline_hist[i - 1]; } readline_hist[0] = strdup(vstr_str(line)); return 1; } else if (c == 27) { escape = true; } else if (c == 127) { if (vstr_len(line) > len) { vstr_cut_tail(line, 1); stdout_tx_str("\b \b"); } } else if (32 <= c && c <= 126) { vstr_add_char(line, c); stdout_tx_str(line->buf + line->len - 1); } } else if (escape == 1) { if (c == '[') { escape = 2; } else { escape = 0; } } else if (escape == 2) { escape = 0; if (c == 'A') { // up arrow if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) { // erase line for (int i = line->len - len; i > 0; i--) { stdout_tx_str("\b \b"); } // set line to history line->len = len; vstr_add_str(line, readline_hist[hist_num]); // draw line stdout_tx_str(readline_hist[hist_num]); // increase hist num hist_num += 1; } } } else { escape = 0; } delay(10); } } bool do_file(const char *filename) { mp_lexer_t *lex = mp_lexer_new_from_memzip_file(filename); if (lex == NULL) { printf("could not open file '%s' for reading\n", filename); return false; } mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind); qstr source_name = mp_lexer_source_name(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return false; } mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, false); mp_parse_node_free(pn); if (module_fun == mp_const_none) { return false; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); return true; } else { // uncaught exception mp_obj_print((mp_obj_t)nlr.ret_val, PRINT_REPR); printf("\n"); return false; } } void do_repl(void) { stdout_tx_str("Micro Python for Teensy 3.1\r\n"); stdout_tx_str("Type \"help()\" for more information.\r\n"); vstr_t line; vstr_init(&line, 32); for (;;) { vstr_reset(&line); int ret = readline(&line, ">>> "); if (ret == 0) { // EOF break; } if (vstr_len(&line) == 0) { continue; } if (mp_repl_is_compound_stmt(vstr_str(&line))) { for (;;) { vstr_add_char(&line, '\n'); int len = vstr_len(&line); int ret = readline(&line, "... "); if (ret == 0 || vstr_len(&line) == len) { // done entering compound statement break; } } } mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, vstr_str(&line), vstr_len(&line), 0); mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_SINGLE_INPUT, &parse_error_kind); qstr source_name = mp_lexer_source_name(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); } else { // parse okay mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, true); if (module_fun != mp_const_none) { nlr_buf_t nlr; uint32_t start = micros(); if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); // optional timing if (0) { uint32_t ticks = micros() - start; // TODO implement a function that does this properly printf("(took %lu ms)\n", ticks); } } else { // uncaught exception mp_obj_print((mp_obj_t)nlr.ret_val, PRINT_REPR); printf("\n"); } } } } stdout_tx_str("\r\n"); } int main(void) { pinMode(LED_BUILTIN, OUTPUT); #if 0 // Wait for host side to get connected while (!usb_vcp_is_connected()) { ; } #else delay(1000); #endif led_init(); led_state(PYB_LED_BUILTIN, 1); // int first_soft_reset = true; soft_reset: // GC init gc_init(&_heap_start, (void*)HEAP_END); qstr_init(); mp_init(); // add some functions to the python namespace { mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help)); mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb); mp_store_attr(m, MP_QSTR_info, mp_make_function_n(0, pyb_info)); mp_store_attr(m, MP_QSTR_source_dir, mp_make_function_n(1, pyb_source_dir)); mp_store_attr(m, MP_QSTR_main, mp_make_function_n(1, pyb_main)); mp_store_attr(m, MP_QSTR_gc, mp_make_function_n(0, pyb_gc)); mp_store_attr(m, MP_QSTR_delay, mp_make_function_n(1, pyb_delay)); mp_store_attr(m, MP_QSTR_led, mp_make_function_n(1, pyb_led)); mp_store_attr(m, MP_QSTR_Led, mp_make_function_n(1, pyb_Led)); mp_store_attr(m, MP_QSTR_analogRead, mp_make_function_n(1, pyb_analog_read)); mp_store_attr(m, MP_QSTR_analogWrite, mp_make_function_n(2, pyb_analog_write)); mp_store_attr(m, MP_QSTR_analogWriteResolution, mp_make_function_n(1, pyb_analog_write_resolution)); mp_store_attr(m, MP_QSTR_analogWriteFrequency, mp_make_function_n(2, pyb_analog_write_frequency)); mp_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj); mp_store_attr(m, MP_QSTR_Servo, mp_make_function_n(0, pyb_Servo)); mp_store_name(MP_QSTR_pyb, m); mp_store_name(MP_QSTR_run, mp_make_function_n(1, pyb_run)); } printf("About execute /boot.py\n"); if (!do_file("/boot.py")) { printf("Unable to open '/boot.py'\n"); flash_error(4); } printf("Done executing /boot.py\n"); // Turn bootup LED off led_state(PYB_LED_BUILTIN, 0); // run main script { vstr_t *vstr = vstr_new(); vstr_add_str(vstr, "/"); if (pyb_config_source_dir == MP_OBJ_NULL) { vstr_add_str(vstr, "src"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir)); } vstr_add_char(vstr, '/'); if (pyb_config_main == MP_OBJ_NULL) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); } printf("About execute '%s'\n", vstr_str(vstr)); if (!do_file(vstr_str(vstr))) { printf("Unable to open '%s'\n", vstr_str(vstr)); flash_error(3); } printf("Done executing '%s'\n", vstr_str(vstr)); vstr_free(vstr); } do_repl(); printf("PYB: soft reboot\n"); // first_soft_reset = false; goto soft_reset; } double sqrt(double x) { // TODO return 0.0; } machine_float_t machine_sqrt(machine_float_t x) { // TODO return x; } // stub out __libc_init_array. It's called by mk20dx128.c and is used to call // global C++ constructors. Since this is a C-only projects, we don't need to // call constructors. void __libc_init_array(void) { } char * ultoa(unsigned long val, char *buf, int radix) { unsigned digit; int i=0, j; char t; while (1) { digit = val % radix; buf[i] = ((digit < 10) ? '0' + digit : 'A' + digit - 10); val /= radix; if (val == 0) break; i++; } buf[i + 1] = 0; for (j=0; j < i; j++, i--) { t = buf[j]; buf[j] = buf[i]; buf[i] = t; } return buf; }