/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #if MICROPY_HW_HAS_LCD #include "qstr.h" #include "parse.h" #include "obj.h" #include "runtime.h" #include "pin.h" #include "genhdr/pins.h" #include "bufhelper.h" #include "spi.h" #include "font_petme128_8x8.h" #include "lcd.h" /// \moduleref pyb /// \class LCD - LCD control for the LCD touch-sensor pyskin /// /// The LCD class is used to control the LCD on the LCD touch-sensor pyskin, /// LCD32MKv1.0. The LCD is a 128x32 pixel monochrome screen, part NHD-C12832A1Z. /// /// The pyskin must be connected in either the X or Y positions, and then /// an LCD object is made using: /// /// lcd = pyb.LCD('X') # if pyskin is in the X position /// lcd = pyb.LCD('Y') # if pyskin is in the Y position /// /// Then you can use: /// /// lcd.light(True) # turn the backlight on /// lcd.write('Hello world!\n') # print text to the screen /// /// This driver implements a double buffer for setting/getting pixels. /// For example, to make a bouncing dot, try: /// /// x = y = 0 /// dx = dy = 1 /// while True: /// # update the dot's position /// x += dx /// y += dy /// /// # make the dot bounce of the edges of the screen /// if x <= 0 or x >= 127: dx = -dx /// if y <= 0 or y >= 31: dy = -dy /// /// lcd.fill(0) # clear the buffer /// lcd.pixel(x, y, 1) # draw the dot /// lcd.show() # show the buffer /// pyb.delay(50) # pause for 50ms #define LCD_INSTR (0) #define LCD_DATA (1) #define LCD_CHAR_BUF_W (16) #define LCD_CHAR_BUF_H (4) #define LCD_PIX_BUF_W (128) #define LCD_PIX_BUF_H (32) #define LCD_PIX_BUF_BYTE_SIZE (LCD_PIX_BUF_W * LCD_PIX_BUF_H / 8) typedef struct _pyb_lcd_obj_t { mp_obj_base_t base; // hardware control for the LCD SPI_HandleTypeDef *spi; const pin_obj_t *pin_cs1; const pin_obj_t *pin_rst; const pin_obj_t *pin_a0; const pin_obj_t *pin_bl; // character buffer for stdout-like output char char_buffer[LCD_CHAR_BUF_W * LCD_CHAR_BUF_H]; int line; int column; int next_line; // double buffering for pixel buffer byte pix_buf[LCD_PIX_BUF_BYTE_SIZE]; byte pix_buf2[LCD_PIX_BUF_BYTE_SIZE]; } pyb_lcd_obj_t; STATIC void lcd_delay(void) { __asm volatile ("nop\nnop"); } STATIC void lcd_out(pyb_lcd_obj_t *lcd, int instr_data, uint8_t i) { lcd_delay(); lcd->pin_cs1->gpio->BSRRH = lcd->pin_cs1->pin_mask; // CS=0; enable if (instr_data == LCD_INSTR) { lcd->pin_a0->gpio->BSRRH = lcd->pin_a0->pin_mask; // A0=0; select instr reg } else { lcd->pin_a0->gpio->BSRRL = lcd->pin_a0->pin_mask; // A0=1; select data reg } lcd_delay(); HAL_SPI_Transmit(lcd->spi, &i, 1, 1000); } // write a string to the LCD at the current cursor location // output it straight away (doesn't use the pixel buffer) STATIC void lcd_write_strn(pyb_lcd_obj_t *lcd, const char *str, unsigned int len) { int redraw_min = lcd->line * LCD_CHAR_BUF_W + lcd->column; int redraw_max = redraw_min; for (; len > 0; len--, str++) { // move to next line if needed if (lcd->next_line) { if (lcd->line + 1 < LCD_CHAR_BUF_H) { lcd->line += 1; } else { lcd->line = LCD_CHAR_BUF_H - 1; for (int i = 0; i < LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1); i++) { lcd->char_buffer[i] = lcd->char_buffer[i + LCD_CHAR_BUF_W]; } for (int i = 0; i < LCD_CHAR_BUF_W; i++) { lcd->char_buffer[LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1) + i] = ' '; } redraw_min = 0; redraw_max = LCD_CHAR_BUF_W * LCD_CHAR_BUF_H; } lcd->next_line = 0; lcd->column = 0; } if (*str == '\n') { lcd->next_line = 1; } else if (*str == '\r') { lcd->column = 0; } else if (*str == '\b') { if (lcd->column > 0) { lcd->column--; redraw_min = 0; // could optimise this to not redraw everything } } else if (lcd->column >= LCD_CHAR_BUF_W) { lcd->next_line = 1; str -= 1; len += 1; } else { lcd->char_buffer[lcd->line * LCD_CHAR_BUF_W + lcd->column] = *str; lcd->column += 1; int max = lcd->line * LCD_CHAR_BUF_W + lcd->column; if (max > redraw_max) { redraw_max = max; } } } // we must draw upside down, because the LCD is upside down for (int i = redraw_min; i < redraw_max; i++) { uint page = i / LCD_CHAR_BUF_W; uint offset = 8 * (LCD_CHAR_BUF_W - 1 - (i - (page * LCD_CHAR_BUF_W))); lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set lcd_out(lcd, LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper lcd_out(lcd, LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower int chr = lcd->char_buffer[i]; if (chr < 32 || chr > 126) { chr = 127; } const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8]; for (int j = 7; j >= 0; j--) { lcd_out(lcd, LCD_DATA, chr_data[j]); } } } /// \classmethod \constructor(skin_position) /// /// Construct an LCD object in the given skin position. `skin_position` can be 'X' or 'Y', and /// should match the position where the LCD pyskin is plugged in. STATIC mp_obj_t pyb_lcd_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get LCD position const char *lcd_id = mp_obj_str_get_str(args[0]); // create lcd object pyb_lcd_obj_t *lcd = m_new_obj(pyb_lcd_obj_t); lcd->base.type = &pyb_lcd_type; // configure pins // TODO accept an SPI object and pin objects for full customisation if ((lcd_id[0] | 0x20) == 'x' && lcd_id[1] == '\0') { lcd->spi = &SPIHandle1; lcd->pin_cs1 = &pin_A2; // X3 lcd->pin_rst = &pin_A3; // X4 lcd->pin_a0 = &pin_A4; // X5 lcd->pin_bl = &pin_C5; // X12 } else if ((lcd_id[0] | 0x20) == 'y' && lcd_id[1] == '\0') { lcd->spi = &SPIHandle2; lcd->pin_cs1 = &pin_B8; // Y3 lcd->pin_rst = &pin_B9; // Y4 lcd->pin_a0 = &pin_B12; // Y5 lcd->pin_bl = &pin_B1; // Y12 } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LCD bus '%s' does not exist", lcd_id)); } // init the SPI bus SPI_InitTypeDef *init = &lcd->spi->Init; init->Mode = SPI_MODE_MASTER; // compute the baudrate prescaler from the desired baudrate // select a prescaler that yields at most the desired baudrate uint spi_clock; if (lcd->spi->Instance == SPI1) { // SPI1 is on APB2 spi_clock = HAL_RCC_GetPCLK2Freq(); } else { // SPI2 and SPI3 are on APB1 spi_clock = HAL_RCC_GetPCLK1Freq(); } uint br_prescale = spi_clock / 16000000; // datasheet says LCD can run at 20MHz, but we go for 16MHz if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } // data is sent bigendian, latches on rising clock init->CLKPolarity = SPI_POLARITY_HIGH; init->CLKPhase = SPI_PHASE_2EDGE; init->Direction = SPI_DIRECTION_2LINES; init->DataSize = SPI_DATASIZE_8BIT; init->NSS = SPI_NSS_SOFT; init->FirstBit = SPI_FIRSTBIT_MSB; init->TIMode = SPI_TIMODE_DISABLED; init->CRCCalculation = SPI_CRCCALCULATION_DISABLED; init->CRCPolynomial = 0; // init the SPI bus spi_init(lcd->spi, false); // set the pins to default values lcd->pin_cs1->gpio->BSRRL = lcd->pin_cs1->pin_mask; lcd->pin_rst->gpio->BSRRL = lcd->pin_rst->pin_mask; lcd->pin_a0->gpio->BSRRL = lcd->pin_a0->pin_mask; lcd->pin_bl->gpio->BSRRH = lcd->pin_bl->pin_mask; // init the pins to be push/pull outputs GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Pin = lcd->pin_cs1->pin_mask; HAL_GPIO_Init(lcd->pin_cs1->gpio, &GPIO_InitStructure); GPIO_InitStructure.Pin = lcd->pin_rst->pin_mask; HAL_GPIO_Init(lcd->pin_rst->gpio, &GPIO_InitStructure); GPIO_InitStructure.Pin = lcd->pin_a0->pin_mask; HAL_GPIO_Init(lcd->pin_a0->gpio, &GPIO_InitStructure); GPIO_InitStructure.Pin = lcd->pin_bl->pin_mask; HAL_GPIO_Init(lcd->pin_bl->gpio, &GPIO_InitStructure); // init the LCD HAL_Delay(1); // wait a bit lcd->pin_rst->gpio->BSRRH = lcd->pin_rst->pin_mask; // RST=0; reset HAL_Delay(1); // wait for reset; 2us min lcd->pin_rst->gpio->BSRRL = lcd->pin_rst->pin_mask; // RST=1; enable HAL_Delay(1); // wait for reset; 2us min lcd_out(lcd, LCD_INSTR, 0xa0); // ADC select, normal lcd_out(lcd, LCD_INSTR, 0xc0); // common output mode select, normal (this flips the display) lcd_out(lcd, LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias lcd_out(lcd, LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on) lcd_out(lcd, LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small lcd_out(lcd, LCD_INSTR, 0x81); // electronic volume mode set lcd_out(lcd, LCD_INSTR, 0x28); // electronic volume register set lcd_out(lcd, LCD_INSTR, 0x40); // display start line set, 0 lcd_out(lcd, LCD_INSTR, 0xaf); // LCD display, on // clear LCD RAM for (int page = 0; page < 4; page++) { lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set lcd_out(lcd, LCD_INSTR, 0x10); // column address set upper lcd_out(lcd, LCD_INSTR, 0x00); // column address set lower for (int i = 0; i < 128; i++) { lcd_out(lcd, LCD_DATA, 0x00); } } // clear local char buffer memset(lcd->char_buffer, ' ', LCD_CHAR_BUF_H * LCD_CHAR_BUF_W); lcd->line = 0; lcd->column = 0; lcd->next_line = 0; // clear local pixel buffer memset(lcd->pix_buf, 0, LCD_PIX_BUF_BYTE_SIZE); memset(lcd->pix_buf2, 0, LCD_PIX_BUF_BYTE_SIZE); return lcd; } /// \method command(instr_data, buf) /// /// Send an arbitrary command to the LCD. Pass 0 for `instr_data` to send an /// instruction, otherwise pass 1 to send data. `buf` is a buffer with the /// instructions/data to send. STATIC mp_obj_t pyb_lcd_command(mp_obj_t self_in, mp_obj_t instr_data_in, mp_obj_t val) { pyb_lcd_obj_t *self = self_in; // get whether instr or data int instr_data = mp_obj_get_int(instr_data_in); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(val, &bufinfo, data); // send the data for (uint i = 0; i < bufinfo.len; i++) { lcd_out(self, instr_data, ((byte*)bufinfo.buf)[i]); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_command_obj, pyb_lcd_command); /// \method contrast(value) /// /// Set the contrast of the LCD. Valid values are between 0 and 47. STATIC mp_obj_t pyb_lcd_contrast(mp_obj_t self_in, mp_obj_t contrast_in) { pyb_lcd_obj_t *self = self_in; int contrast = mp_obj_get_int(contrast_in); if (contrast < 0) { contrast = 0; } else if (contrast > 0x2f) { contrast = 0x2f; } lcd_out(self, LCD_INSTR, 0x81); // electronic volume mode set lcd_out(self, LCD_INSTR, contrast); // electronic volume register set return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_contrast_obj, pyb_lcd_contrast); /// \method light(value) /// /// Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off. STATIC mp_obj_t pyb_lcd_light(mp_obj_t self_in, mp_obj_t value) { pyb_lcd_obj_t *self = self_in; if (mp_obj_is_true(value)) { self->pin_bl->gpio->BSRRL = self->pin_bl->pin_mask; // set pin high to turn backlight on } else { self->pin_bl->gpio->BSRRH = self->pin_bl->pin_mask; // set pin low to turn backlight off } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_light_obj, pyb_lcd_light); /// \method write(str) /// /// Write the string `str` to the screen. It will appear immediately. STATIC mp_obj_t pyb_lcd_write(mp_obj_t self_in, mp_obj_t str) { pyb_lcd_obj_t *self = self_in; uint len; const char *data = mp_obj_str_get_data(str, &len); lcd_write_strn(self, data, len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_write_obj, pyb_lcd_write); /// \method fill(colour) /// /// Fill the screen with the given colour (0 or 1 for white or black). /// /// This method writes to the hidden buffer. Use `show()` to show the buffer. STATIC mp_obj_t pyb_lcd_fill(mp_obj_t self_in, mp_obj_t col_in) { pyb_lcd_obj_t *self = self_in; int col = mp_obj_get_int(col_in); if (col) { col = 0xff; } memset(self->pix_buf, col, LCD_PIX_BUF_BYTE_SIZE); memset(self->pix_buf2, col, LCD_PIX_BUF_BYTE_SIZE); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_fill_obj, pyb_lcd_fill); /// \method get(x, y) /// /// Get the pixel at the position `(x, y)`. Returns 0 or 1. /// /// This method reads from the visible buffer. STATIC mp_obj_t pyb_lcd_get(mp_obj_t self_in, mp_obj_t x_in, mp_obj_t y_in) { pyb_lcd_obj_t *self = self_in; int x = mp_obj_get_int(x_in); int y = mp_obj_get_int(y_in); if (0 <= x && x <= 127 && 0 <= y && y <= 31) { uint byte_pos = x + 128 * ((uint)y >> 3); if (self->pix_buf[byte_pos] & (1 << (y & 7))) { return mp_obj_new_int(1); } } return mp_obj_new_int(0); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_get_obj, pyb_lcd_get); /// \method pixel(x, y, colour) /// /// Set the pixel at `(x, y)` to the given colour (0 or 1). /// /// This method writes to the hidden buffer. Use `show()` to show the buffer. STATIC mp_obj_t pyb_lcd_pixel(mp_uint_t n_args, const mp_obj_t *args) { pyb_lcd_obj_t *self = args[0]; int x = mp_obj_get_int(args[1]); int y = mp_obj_get_int(args[2]); if (0 <= x && x <= 127 && 0 <= y && y <= 31) { uint byte_pos = x + 128 * ((uint)y >> 3); if (mp_obj_get_int(args[3]) == 0) { self->pix_buf2[byte_pos] &= ~(1 << (y & 7)); } else { self->pix_buf2[byte_pos] |= 1 << (y & 7); } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_pixel_obj, 4, 4, pyb_lcd_pixel); /// \method text(str, x, y, colour) /// /// Draw the given text to the position `(x, y)` using the given colour (0 or 1). /// /// This method writes to the hidden buffer. Use `show()` to show the buffer. STATIC mp_obj_t pyb_lcd_text(mp_uint_t n_args, const mp_obj_t *args) { // extract arguments pyb_lcd_obj_t *self = args[0]; uint len; const char *data = mp_obj_str_get_data(args[1], &len); int x0 = mp_obj_get_int(args[2]); int y0 = mp_obj_get_int(args[3]); int col = mp_obj_get_int(args[4]); // loop over chars for (const char *top = data + len; data < top; data++) { // get char and make sure its in range of font uint chr = *(byte*)data; if (chr < 32 || chr > 127) { chr = 127; } // get char data const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8]; // loop over char data for (uint j = 0; j < 8; j++, x0++) { if (0 <= x0 && x0 < LCD_PIX_BUF_W) { // clip x uint vline_data = chr_data[j]; // each byte of char data is a vertical column of 8 pixels, LSB at top for (int y = y0; vline_data; vline_data >>= 1, y++) { // scan over vertical column if (vline_data & 1) { // only draw if pixel set if (0 <= y && y < LCD_PIX_BUF_H) { // clip y uint byte_pos = x0 + LCD_PIX_BUF_W * ((uint)y >> 3); if (col == 0) { // clear pixel self->pix_buf2[byte_pos] &= ~(1 << (y & 7)); } else { // set pixel self->pix_buf2[byte_pos] |= 1 << (y & 7); } } } } } } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_text_obj, 5, 5, pyb_lcd_text); /// \method show() /// /// Show the hidden buffer on the screen. STATIC mp_obj_t pyb_lcd_show(mp_obj_t self_in) { pyb_lcd_obj_t *self = self_in; memcpy(self->pix_buf, self->pix_buf2, LCD_PIX_BUF_BYTE_SIZE); for (uint page = 0; page < 4; page++) { lcd_out(self, LCD_INSTR, 0xb0 | page); // page address set lcd_out(self, LCD_INSTR, 0x10); // column address set upper; 0 lcd_out(self, LCD_INSTR, 0x00); // column address set lower; 0 for (uint i = 0; i < 128; i++) { lcd_out(self, LCD_DATA, self->pix_buf[128 * page + 127 - i]); } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_lcd_show_obj, pyb_lcd_show); STATIC const mp_map_elem_t pyb_lcd_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_command), (mp_obj_t)&pyb_lcd_command_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_contrast), (mp_obj_t)&pyb_lcd_contrast_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_light), (mp_obj_t)&pyb_lcd_light_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_lcd_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_fill), (mp_obj_t)&pyb_lcd_fill_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_get), (mp_obj_t)&pyb_lcd_get_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pixel), (mp_obj_t)&pyb_lcd_pixel_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_text), (mp_obj_t)&pyb_lcd_text_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_show), (mp_obj_t)&pyb_lcd_show_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_lcd_locals_dict, pyb_lcd_locals_dict_table); const mp_obj_type_t pyb_lcd_type = { { &mp_type_type }, .name = MP_QSTR_LCD, .make_new = pyb_lcd_make_new, .locals_dict = (mp_obj_t)&pyb_lcd_locals_dict, }; #endif // MICROPY_HW_HAS_LCD