/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "std.h" #include "simplelink.h" #include "py/mpconfig.h" #include MICROPY_HAL_H #include "py/obj.h" #include "py/objstr.h" #include "py/runtime.h" #include "netutils.h" #include "modnetwork.h" #include "modusocket.h" #include "modwlan.h" #include "pybioctl.h" #include "debug.h" #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) #include "serverstask.h" #endif #include "mpexception.h" #include "mpcallback.h" #include "pybsleep.h" /****************************************************************************** DEFINE TYPES ******************************************************************************/ // Status bits - These are used to set/reset the corresponding bits in a given variable typedef enum{ STATUS_BIT_NWP_INIT = 0, // If this bit is set: Network Processor is // powered up STATUS_BIT_CONNECTION, // If this bit is set: the device is connected to // the AP or client is connected to device (AP) STATUS_BIT_IP_LEASED, // If this bit is set: the device has leased IP to // any connected client STATUS_BIT_IP_ACQUIRED, // If this bit is set: the device has acquired an IP STATUS_BIT_SMARTCONFIG_START, // If this bit is set: the SmartConfiguration // process is started from SmartConfig app STATUS_BIT_P2P_DEV_FOUND, // If this bit is set: the device (P2P mode) // found any p2p-device in scan STATUS_BIT_P2P_REQ_RECEIVED, // If this bit is set: the device (P2P mode) // found any p2p-negotiation request STATUS_BIT_CONNECTION_FAILED, // If this bit is set: the device(P2P mode) // connection to client(or reverse way) is failed STATUS_BIT_PING_DONE // If this bit is set: the device has completed // the ping operation }e_StatusBits; typedef struct _wlan_obj_t { mp_obj_base_t base; SlWlanMode_t mode; uint32_t status; uint32_t ip; uint32_t gateway; uint32_t dns; #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) bool servers_enabled; #endif uint8_t security; // my own name and mac uint8_t ssid[33]; uint8_t mac[SL_MAC_ADDR_LEN]; // the name and mac of the other device uint8_t ssid_o[33]; uint8_t bssid[6]; bool staconnected; } wlan_obj_t; /****************************************************************************** DEFINE CONSTANTS ******************************************************************************/ #define CLR_STATUS_BIT_ALL(status) (status = 0) #define SET_STATUS_BIT(status, bit) (status |= ( 1 << (bit))) #define CLR_STATUS_BIT(status, bit) (status &= ~(1 << (bit))) #define GET_STATUS_BIT(status, bit) (0 != (status & (1 << (bit)))) #define IS_NW_PROCSR_ON(status) GET_STATUS_BIT(status, STATUS_BIT_NWP_INIT) #define IS_CONNECTED(status) GET_STATUS_BIT(status, STATUS_BIT_CONNECTION) #define IS_IP_LEASED(status) GET_STATUS_BIT(status, STATUS_BIT_IP_LEASED) #define IS_IP_ACQUIRED(status) GET_STATUS_BIT(status, STATUS_BIT_IP_ACQUIRED) #define IS_SMART_CFG_START(status) GET_STATUS_BIT(status, STATUS_BIT_SMARTCONFIG_START) #define IS_P2P_DEV_FOUND(status) GET_STATUS_BIT(status, STATUS_BIT_P2P_DEV_FOUND) #define IS_P2P_REQ_RCVD(status) GET_STATUS_BIT(status, STATUS_BIT_P2P_REQ_RECEIVED) #define IS_CONNECT_FAILED(status) GET_STATUS_BIT(status, STATUS_BIT_CONNECTION_FAILED) #define IS_PING_DONE(status) GET_STATUS_BIT(status, STATUS_BIT_PING_DONE) #define MODWLAN_SL_SCAN_ENABLE 1 #define MODWLAN_SL_SCAN_DISABLE 0 #define MODWLAN_SL_MAX_NETWORKS 20 #define MODWLAN_TIMEOUT_MS 5000 #define MODWLAN_MAX_NETWORKS 20 #define MODWLAN_SCAN_PERIOD_S 3600 // 1 hour #define MODWLAN_WAIT_FOR_SCAN_MS 1050 #define ASSERT_ON_ERROR( x ) ASSERT((x) >= 0 ) #define IPV4_ADDR_STR_LEN_MAX (16) #define WLAN_MAX_RX_SIZE 16000 #define WLAN_MAX_TX_SIZE 1476 #define MODWLAN_IP_MODE_DYNAMIC 0 #define MODWLAN_IP_MODE_STATIC 1 #define MAKE_SOCKADDR(addr, ip, port) sockaddr addr; \ addr.sa_family = AF_INET; \ addr.sa_data[0] = port >> 8; \ addr.sa_data[1] = port; \ addr.sa_data[2] = ip[3]; \ addr.sa_data[3] = ip[2]; \ addr.sa_data[4] = ip[1]; \ addr.sa_data[5] = ip[0]; #define UNPACK_SOCKADDR(addr, ip, port) port = (addr.sa_data[0] << 8) | addr.sa_data[1]; \ ip[0] = addr.sa_data[5]; \ ip[1] = addr.sa_data[4]; \ ip[2] = addr.sa_data[3]; \ ip[3] = addr.sa_data[2]; /****************************************************************************** DECLARE PRIVATE DATA ******************************************************************************/ STATIC wlan_obj_t wlan_obj = { .mode = -1, .status = 0, .ip = 0, .gateway = 0, .dns = 0, #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) .servers_enabled = false, #endif .security = SL_SEC_TYPE_OPEN, .ssid = {0}, .bssid = {0}, .mac = {0}, .ssid_o = {0}, .staconnected = false }; STATIC const mp_cb_methods_t wlan_cb_methods; /****************************************************************************** DECLARE PUBLIC DATA ******************************************************************************/ OsiLockObj_t wlan_LockObj; /****************************************************************************** DECLARE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void wlan_initialize_data (void); STATIC void wlan_reenable (SlWlanMode_t mode); STATIC void wlan_servers_start (void); STATIC void wlan_servers_stop (void); STATIC void wlan_get_sl_mac (void); STATIC bool wlan_is_connected (void); STATIC modwlan_Status_t wlan_do_connect (const char* ssid, uint32_t ssid_len, const char* bssid, uint8_t sec, const char* key, uint32_t key_len, uint32_t timeout); STATIC void wlan_lpds_callback_enable (mp_obj_t self_in); STATIC void wlan_lpds_callback_disable (mp_obj_t self_in); STATIC bool wlan_scan_result_is_unique (const mp_obj_list_t *nets, _u8 *bssid); //***************************************************************************** // //! \brief The Function Handles WLAN Events //! //! \param[in] pWlanEvent - Pointer to WLAN Event Info //! //! \return None //! //***************************************************************************** void SimpleLinkWlanEventHandler(SlWlanEvent_t *pWlanEvent) { if (!pWlanEvent) { return; } switch(pWlanEvent->Event) { case SL_WLAN_CONNECT_EVENT: { slWlanConnectAsyncResponse_t *pEventData = &pWlanEvent->EventData.STAandP2PModeWlanConnected; // copy the new connection data memcpy(wlan_obj.bssid, pEventData->bssid, SL_BSSID_LENGTH); memcpy(wlan_obj.ssid_o, pEventData->ssid_name, pEventData->ssid_len); wlan_obj.ssid_o[pEventData->ssid_len] = '\0'; SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION); } break; case SL_WLAN_DISCONNECT_EVENT: CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION); CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED); #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) servers_reset(); #endif break; case SL_WLAN_STA_CONNECTED_EVENT: { slPeerInfoAsyncResponse_t *pEventData = &pWlanEvent->EventData.APModeStaConnected; // get the mac address and name of the connected device memcpy(wlan_obj.bssid, pEventData->mac, SL_BSSID_LENGTH); memcpy(wlan_obj.ssid_o, pEventData->go_peer_device_name, pEventData->go_peer_device_name_len); wlan_obj.ssid_o[pEventData->go_peer_device_name_len] = '\0'; wlan_obj.staconnected = true; } break; case SL_WLAN_STA_DISCONNECTED_EVENT: wlan_obj.staconnected = false; #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) servers_reset(); #endif break; case SL_WLAN_P2P_DEV_FOUND_EVENT: // TODO break; case SL_WLAN_P2P_NEG_REQ_RECEIVED_EVENT: // TODO break; case SL_WLAN_CONNECTION_FAILED_EVENT: // TODO break; default: break; } } //***************************************************************************** // //! \brief This function handles network events such as IP acquisition, IP //! leased, IP released etc. //! //! \param[in] pNetAppEvent - Pointer to NetApp Event Info //! //! \return None //! //***************************************************************************** void SimpleLinkNetAppEventHandler(SlNetAppEvent_t *pNetAppEvent) { if(!pNetAppEvent) { return; } switch(pNetAppEvent->Event) { case SL_NETAPP_IPV4_IPACQUIRED_EVENT: { SlIpV4AcquiredAsync_t *pEventData = NULL; SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED); // Ip Acquired Event Data pEventData = &pNetAppEvent->EventData.ipAcquiredV4; // Get ip, gateway and dns wlan_obj.gateway = pEventData->gateway; wlan_obj.ip = pEventData->ip; wlan_obj.dns = pEventData->dns; } break; case SL_NETAPP_IPV6_IPACQUIRED_EVENT: break; case SL_NETAPP_IP_LEASED_EVENT: break; case SL_NETAPP_IP_RELEASED_EVENT: break; default: break; } } //***************************************************************************** // //! \brief This function handles HTTP server events //! //! \param[in] pServerEvent - Contains the relevant event information //! \param[in] pServerResponse - Should be filled by the user with the //! relevant response information //! //! \return None //! //**************************************************************************** void SimpleLinkHttpServerCallback(SlHttpServerEvent_t *pHttpEvent, SlHttpServerResponse_t *pHttpResponse) { if (!pHttpEvent) { return; } switch (pHttpEvent->Event) { case SL_NETAPP_HTTPGETTOKENVALUE_EVENT: break; case SL_NETAPP_HTTPPOSTTOKENVALUE_EVENT: break; default: break; } } //***************************************************************************** // //! \brief This function handles General Events //! //! \param[in] pDevEvent - Pointer to General Event Info //! //! \return None //! //***************************************************************************** void SimpleLinkGeneralEventHandler(SlDeviceEvent_t *pDevEvent) { if (!pDevEvent) { return; } } //***************************************************************************** // //! This function handles socket events indication //! //! \param[in] pSock - Pointer to Socket Event Info //! //! \return None //! //***************************************************************************** void SimpleLinkSockEventHandler(SlSockEvent_t *pSock) { if (!pSock) { return; } switch( pSock->Event ) { case SL_SOCKET_TX_FAILED_EVENT: switch( pSock->socketAsyncEvent.SockTxFailData.status) { case SL_ECLOSE: break; default: break; } break; case SL_SOCKET_ASYNC_EVENT: switch(pSock->socketAsyncEvent.SockAsyncData.type) { case SSL_ACCEPT: break; case RX_FRAGMENTATION_TOO_BIG: break; case OTHER_SIDE_CLOSE_SSL_DATA_NOT_ENCRYPTED: break; default: break; } break; default: break; } } //***************************************************************************** // SimpleLink Asynchronous Event Handlers -- End //***************************************************************************** __attribute__ ((section (".boot"))) void wlan_pre_init (void) { // create the wlan lock ASSERT(OSI_OK == sl_LockObjCreate(&wlan_LockObj, "WlanLock")); } void wlan_first_start (void) { if (wlan_obj.mode < 0) { wlan_initialize_data(); wlan_obj.mode = sl_Start(0, 0, 0); sl_LockObjUnlock (&wlan_LockObj); } // get the mac address wlan_get_sl_mac(); } modwlan_Status_t wlan_sl_enable (SlWlanMode_t mode, const char *ssid, uint8_t ssid_len, uint8_t sec, const char *key, uint8_t key_len, uint8_t channel) { if (mode == ROLE_STA || mode == ROLE_AP || mode == ROLE_P2P) { // stop the servers wlan_servers_stop(); // do a basic start wlan_first_start(); // Device in station-mode. Disconnect previous connection if any // The function returns 0 if 'Disconnected done', negative number if already // disconnected Wait for 'disconnection' event if 0 is returned, Ignore // other return-codes if (0 == sl_WlanDisconnect()) { while (IS_CONNECTED (wlan_obj.status)) { HAL_Delay (5); wlan_update(); } } // Remove all profiles ASSERT_ON_ERROR(sl_WlanProfileDel(0xFF)); // Enable the DHCP client uint8_t value = 1; ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_STA_P2P_CL_DHCP_ENABLE, 1, 1, &value)); // Set PM policy to normal ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_PM, SL_NORMAL_POLICY, NULL, 0)); // Unregister mDNS services ASSERT_ON_ERROR(sl_NetAppMDNSUnRegisterService(0, 0)); // Stop the internal HTTP server sl_NetAppStop(SL_NET_APP_HTTP_SERVER_ID); // Remove all 64 filters (8 * 8) _WlanRxFilterOperationCommandBuff_t RxFilterIdMask; memset ((void *)&RxFilterIdMask, 0 ,sizeof(RxFilterIdMask)); memset(RxFilterIdMask.FilterIdMask, 0xFF, 8); ASSERT_ON_ERROR(sl_WlanRxFilterSet(SL_REMOVE_RX_FILTER, (_u8 *)&RxFilterIdMask, sizeof(_WlanRxFilterOperationCommandBuff_t))); // Set Tx power level for station or AP mode // Number between 0-15, as dB offset from max power - 0 will set max power uint8_t ucPower = 0; if (mode == ROLE_AP) { // Switch to AP mode ASSERT_ON_ERROR(sl_WlanSetMode(mode)); ASSERT (ssid != NULL && key != NULL); ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_AP_TX_POWER, sizeof(ucPower), (unsigned char *)&ucPower)); ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SSID, ssid_len, (unsigned char *)ssid)); memcpy(wlan_obj.ssid, (unsigned char *)ssid, ssid_len); wlan_obj.ssid[ssid_len] = '\0'; ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SECURITY_TYPE, sizeof(uint8_t), &sec)); ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_PASSWORD, key_len, (unsigned char *)key)); _u8* country = (_u8*)"EU"; ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2, country)); ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_CHANNEL, 1, (_u8 *)&channel)); // stop and start again wlan_reenable(mode); ASSERT (wlan_obj.mode == mode); SlNetCfgIpV4Args_t ipV4; ipV4.ipV4 = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 IP address ipV4.ipV4Mask = (_u32)SL_IPV4_VAL(255,255,255,0); // _u32 Subnet mask for this AP ipV4.ipV4Gateway = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 Default gateway address ipV4.ipV4DnsServer = (_u32)SL_IPV4_VAL(192,168,1,1); // _u32 DNS server address ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE, IPCONFIG_MODE_ENABLE_IPV4, sizeof(SlNetCfgIpV4Args_t), (_u8 *)&ipV4)); // stop and start again wlan_reenable(mode); SlNetAppDhcpServerBasicOpt_t dhcpParams; dhcpParams.lease_time = 4096; // lease time (in seconds) of the IP Address dhcpParams.ipv4_addr_start = SL_IPV4_VAL(192,168,1,2); // first IP Address for allocation. dhcpParams.ipv4_addr_last = SL_IPV4_VAL(192,168,1,254); // last IP Address for allocation. ASSERT_ON_ERROR(sl_NetAppStop(SL_NET_APP_DHCP_SERVER_ID)); // Stop DHCP server before settings ASSERT_ON_ERROR(sl_NetAppSet(SL_NET_APP_DHCP_SERVER_ID, NETAPP_SET_DHCP_SRV_BASIC_OPT, sizeof(SlNetAppDhcpServerBasicOpt_t), (_u8* )&dhcpParams)); // set parameters ASSERT_ON_ERROR(sl_NetAppStart(SL_NET_APP_DHCP_SERVER_ID)); // Start DHCP server with new settings // stop and start again wlan_reenable(mode); // save the security type wlan_obj.security = sec; } // STA and P2P modes else { ASSERT_ON_ERROR(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_STA_TX_POWER, sizeof(ucPower), (unsigned char *)&ucPower)); ASSERT_ON_ERROR(sl_WlanSetMode(mode)); // stop and start again wlan_reenable(mode); // set connection policy to Auto + Fast (tries to connect to the last connected AP) ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(1, 1, 0, 0, 0), NULL, 0)); } // start the servers before returning wlan_servers_start(); return MODWLAN_OK; } return MODWLAN_ERROR_INVALID_PARAMS; } void wlan_update(void) { #ifndef SL_PLATFORM_MULTI_THREADED _SlTaskEntry(); #endif } void wlan_stop (uint32_t timeout) { wlan_servers_stop(); sl_LockObjLock (&wlan_LockObj, SL_OS_WAIT_FOREVER); sl_Stop(timeout); wlan_obj.mode = -1; } void wlan_start (void) { wlan_obj.mode = sl_Start(0, 0, 0); sl_LockObjUnlock (&wlan_LockObj); wlan_servers_start(); } void wlan_get_mac (uint8_t *macAddress) { if (macAddress) { memcpy (macAddress, wlan_obj.mac, SL_MAC_ADDR_LEN); } } void wlan_get_ip (uint32_t *ip) { if (ip) { *ip = IS_IP_ACQUIRED(wlan_obj.status) ? wlan_obj.ip : 0; } } //***************************************************************************** // DEFINE STATIC FUNCTIONS //***************************************************************************** STATIC void wlan_initialize_data (void) { wlan_obj.status = 0; wlan_obj.dns = 0; wlan_obj.gateway = 0; wlan_obj.ip = 0; wlan_obj.security = SL_SEC_TYPE_OPEN; wlan_obj.staconnected = false; memset(wlan_obj.ssid, 0, sizeof(wlan_obj.ssid)); memset(wlan_obj.ssid_o, 0, sizeof(wlan_obj.ssid)); memset(wlan_obj.bssid, 0, sizeof(wlan_obj.bssid)); } STATIC void wlan_reenable (SlWlanMode_t mode) { // stop and start again sl_LockObjLock (&wlan_LockObj, SL_OS_WAIT_FOREVER); sl_Stop(SL_STOP_TIMEOUT); wlan_obj.status = 0; wlan_obj.mode = sl_Start(0, 0, 0); sl_LockObjUnlock (&wlan_LockObj); ASSERT (wlan_obj.mode == mode); } STATIC void wlan_servers_start (void) { #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) // start the servers if they were enabled before if (wlan_obj.servers_enabled) { servers_start(); } #endif } STATIC void wlan_servers_stop (void) { #if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP) // Stop all other processes using the wlan engine if ((wlan_obj.servers_enabled = servers_are_enabled())) { servers_stop(); } #endif } STATIC modwlan_Status_t wlan_do_connect (const char* ssid, uint32_t ssid_len, const char* bssid, uint8_t sec, const char* key, uint32_t key_len, uint32_t timeout) { SlSecParams_t secParams; secParams.Key = (_i8*)key; secParams.KeyLen = ((key != NULL) ? key_len : 0); secParams.Type = sec; if (0 == sl_WlanConnect((_i8*)ssid, ssid_len, (_u8*)bssid, &secParams, NULL)) { // wait for the WLAN Event uint32_t waitForConnectionMs = 0; while (!IS_CONNECTED(wlan_obj.status)) { HAL_Delay (5); waitForConnectionMs += 5; if (waitForConnectionMs > timeout) { return MODWLAN_ERROR_TIMEOUT; } wlan_update(); } return MODWLAN_OK; } return MODWLAN_ERROR_INVALID_PARAMS; } STATIC void wlan_get_sl_mac (void) { // Get the MAC address uint8_t macAddrLen = SL_MAC_ADDR_LEN; sl_NetCfgGet(SL_MAC_ADDRESS_GET, NULL, &macAddrLen, wlan_obj.mac); } STATIC bool wlan_is_connected (void) { return ((GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION) && GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED)) || wlan_obj.staconnected); } /// \method init(mode, ssid=None, *, security=wlan.OPEN, key=None, channel=5) /// /// Initialise the WLAN engine with the given parameters: /// /// - `mode` can be ROLE_AP, ROLE_STA and ROLE_P2P. /// - `ssid` is the network ssid in case of AP mode /// - `security` is the security type for AP mode /// - `key` is the key when in AP mode /// - `channel` is the channel to use for the AP network STATIC const mp_arg_t wlan_init_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = ROLE_STA} }, { MP_QSTR_ssid, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SL_SEC_TYPE_OPEN} }, { MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5} }, }; STATIC mp_obj_t wlan_init_helper(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args mp_arg_val_t args[MP_ARRAY_SIZE(wlan_init_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(wlan_init_args), wlan_init_args, args); // get the ssid mp_uint_t ssid_len; const char *ssid = mp_obj_str_get_data(args[1].u_obj, &ssid_len); // get the key mp_uint_t key_len; const char *key = mp_obj_str_get_data(args[3].u_obj, &key_len); if (key_len < 8) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } // force the channel to be between 1-11 uint8_t channel = args[4].u_int; channel = (channel > 0 && channel != 12) ? channel % 12 : 1; if (MODWLAN_OK != wlan_sl_enable (args[0].u_int, ssid, ssid_len, args[2].u_int, key, key_len, channel)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } return mp_const_none; } STATIC void wlan_lpds_callback_enable (mp_obj_t self_in) { mp_obj_t _callback = mpcallback_find(self_in); pybsleep_set_wlan_lpds_callback (_callback); } STATIC void wlan_lpds_callback_disable (mp_obj_t self_in) { pybsleep_set_wlan_lpds_callback (NULL); } STATIC bool wlan_scan_result_is_unique (const mp_obj_list_t *nets, _u8 *bssid) { for (int i = 0; i < nets->len; i++) { // index 1 in the list is the bssid mp_obj_str_t *_bssid = (mp_obj_str_t *)((mp_obj_tuple_t *)nets->items[i])->items[1]; if (!memcmp (_bssid->data, bssid, SL_BSSID_LENGTH)) { return false; } } return true; } /******************************************************************************/ // Micro Python bindings; WLAN class /// \class WLAN - driver for the WLAN functionality of the SoC /// \classmethod \constructor() /// Create a wlan obecjt and initialise the simplelink engine // STATIC mp_obj_t wlan_make_new (mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, MP_ARRAY_SIZE(wlan_init_args), true); if (n_args > 0) { // get the mode SlWlanMode_t mode = mp_obj_get_int(args[0]); if (mode == ROLE_AP) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); wlan_init_helper(n_args, args, &kw_args); } // TODO only STA mode supported for the moment. What if P2P? else if (n_args == 1) { if (MODWLAN_OK != wlan_sl_enable (mode, NULL, 0, 0, NULL, 0, 0)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, mpexception_num_type_invalid_arguments)); } } wlan_obj.base.type = (mp_obj_type_t*)&mod_network_nic_type_wlan; return &wlan_obj; } /// \method connect(ssid, *, security=OPEN, key=None, bssid=None, timeout=5000) // if security is WPA/WPA2, the key must be a string /// if security is WEP, the key must be binary STATIC mp_obj_t wlan_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { STATIC const mp_arg_t allowed_args[] = { { MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, }, { MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SL_SEC_TYPE_OPEN} }, { MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MODWLAN_TIMEOUT_MS} }, }; // check for correct wlan mode if (wlan_obj.mode != ROLE_STA && wlan_obj.mode != ROLE_P2P) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_request_not_possible)); } // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the ssid mp_uint_t ssid_len; const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len); // get the security type mp_uint_t sec = args[1].u_int; // get key and its len mp_uint_t key_len = 0; const char *key = NULL; mp_buffer_info_t wepkey; mp_obj_t key_o = args[2].u_obj; if (key_o != MP_OBJ_NULL) { // wep key must be given as raw bytes if (sec == SL_SEC_TYPE_WEP) { mp_get_buffer_raise(key_o, &wepkey, MP_BUFFER_READ); key = wepkey.buf; key_len = wepkey.len; } else { key = mp_obj_str_get_data(key_o, &key_len); } } // get bssid const char *bssid = NULL; if (args[3].u_obj != MP_OBJ_NULL) { bssid = mp_obj_str_get_str(args[3].u_obj); } // get the timeout uint32_t timeout = MAX(args[4].u_int, 0); if (GET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION)) { if (0 == sl_WlanDisconnect()) { while (IS_CONNECTED(wlan_obj.status)) { HAL_Delay (5); wlan_update(); } } } // connect to the requested access point modwlan_Status_t status; status = wlan_do_connect (ssid, ssid_len, bssid, sec, key, key_len, timeout); if (status == MODWLAN_ERROR_TIMEOUT) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } else if (status == MODWLAN_ERROR_INVALID_PARAMS) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } wlan_obj.security = sec; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wlan_connect_obj, 1, wlan_connect); /// \method wlan_disconnect() /// Close the current WLAN connection STATIC mp_obj_t wlan_disconnect(mp_obj_t self_in) { sl_WlanDisconnect(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_disconnect_obj, wlan_disconnect); /// \method is_connected() /// Return true if connected to the AP and an IP address has been assigned. Also true if there's any station connected. /// false otherwise. STATIC mp_obj_t wlan_isconnected(mp_obj_t self_in) { if (wlan_is_connected()) { return mp_const_true; } return mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_isconnected_obj, wlan_isconnected); STATIC mp_obj_t wlan_ifconfig (mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 1) { // get unsigned char len = sizeof(SlNetCfgIpV4Args_t); unsigned char dhcpIsOn; SlNetCfgIpV4Args_t ipV4; sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO, &dhcpIsOn, &len, (uint8_t *)&ipV4); mp_obj_t ifconfig[4] = { netutils_format_ipv4_addr((uint8_t *)&ipV4.ipV4, NETUTILS_LITTLE), netutils_format_ipv4_addr((uint8_t *)&ipV4.ipV4Mask, NETUTILS_LITTLE), netutils_format_ipv4_addr((uint8_t *)&ipV4.ipV4Gateway, NETUTILS_LITTLE), netutils_format_ipv4_addr((uint8_t *)&ipV4.ipV4DnsServer, NETUTILS_LITTLE) }; return mp_obj_new_tuple(4, ifconfig); } else { if (mp_obj_get_type(args[1]) == &mp_type_tuple) { // set a static ip mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 4, &items); SlNetCfgIpV4Args_t ipV4; netutils_parse_ipv4_addr(items[0], (uint8_t *)&ipV4.ipV4, NETUTILS_LITTLE); netutils_parse_ipv4_addr(items[1], (uint8_t *)&ipV4.ipV4Mask, NETUTILS_LITTLE); netutils_parse_ipv4_addr(items[2], (uint8_t *)&ipV4.ipV4Gateway, NETUTILS_LITTLE); netutils_parse_ipv4_addr(items[3], (uint8_t *)&ipV4.ipV4DnsServer, NETUTILS_LITTLE); // stop the servers wlan_servers_stop(); if (wlan_obj.mode == ROLE_AP) { ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE, IPCONFIG_MODE_ENABLE_IPV4, sizeof(SlNetCfgIpV4Args_t), (_u8 *)&ipV4)); // stop and start again wlan_reenable(wlan_obj.mode); SlNetAppDhcpServerBasicOpt_t dhcpParams; dhcpParams.lease_time = 4096; // lease time (in seconds) of the IP Address dhcpParams.ipv4_addr_start = ipV4.ipV4 + 1; // first IP Address for allocation. dhcpParams.ipv4_addr_last = (ipV4.ipV4 & 0xFFFFFF00) + 254; // last IP Address for allocation. ASSERT_ON_ERROR(sl_NetAppStop(SL_NET_APP_DHCP_SERVER_ID)); // stop DHCP server before settings ASSERT_ON_ERROR(sl_NetAppSet(SL_NET_APP_DHCP_SERVER_ID, NETAPP_SET_DHCP_SRV_BASIC_OPT, sizeof(SlNetAppDhcpServerBasicOpt_t), (_u8* )&dhcpParams)); // set parameters ASSERT_ON_ERROR(sl_NetAppStart(SL_NET_APP_DHCP_SERVER_ID)); // start DHCP server with new settings } else { ASSERT_ON_ERROR(sl_NetCfgSet(SL_IPV4_STA_P2P_CL_STATIC_ENABLE, IPCONFIG_MODE_ENABLE_IPV4, sizeof(SlNetCfgIpV4Args_t), (_u8 *)&ipV4)); } // re-enable WLAN and start the servers again wlan_reenable (wlan_obj.mode); wlan_servers_start(); } else { // check for the correct string const char *mode = mp_obj_str_get_str(args[1]); if (strcmp("dhcp", mode)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } // only if we are not in AP mode if (wlan_obj.mode != ROLE_AP) { _u8 val = 1; wlan_servers_stop(); sl_NetCfgSet(SL_IPV4_STA_P2P_CL_DHCP_ENABLE, IPCONFIG_MODE_ENABLE_IPV4, 1, &val); wlan_reenable (wlan_obj.mode); wlan_servers_start(); } } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(wlan_ifconfig_obj, 1, 2, wlan_ifconfig); #if MICROPY_PORT_WLAN_URN STATIC mp_obj_t wlan_urn (uint n_args, const mp_obj_t *args) { char urn[MAX_DEVICE_URN_LEN]; uint8_t len = MAX_DEVICE_URN_LEN; // an URN is given, so set it if (n_args == 2) { const char *p = mp_obj_str_get_str(args[1]); uint8_t len = strlen(p); // the call to sl_NetAppSet corrupts the input string URN=args[1], so we copy into a local buffer if (len > MAX_DEVICE_URN_LEN) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } strcpy(urn, p); if (sl_NetAppSet(SL_NET_APP_DEVICE_CONFIG_ID, NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN, len, (unsigned char *)urn) < 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } } else { // get the URN if (sl_NetAppGet(SL_NET_APP_DEVICE_CONFIG_ID, NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN, &len, (uint8_t *)urn) < 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } return mp_obj_new_str(urn, (len - 1), false); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(wlan_urn_obj, 1, 2, wlan_urn); #endif /// \method wlan_netlist() /// Return a list of tuples with all the acces points within range STATIC mp_obj_t wlan_scan(mp_obj_t self_in) { STATIC const qstr wlan_scan_info_fields[] = { MP_QSTR_ssid, MP_QSTR_bssid, MP_QSTR_security, MP_QSTR_channel, MP_QSTR_rssi }; Sl_WlanNetworkEntry_t wlanEntry; mp_obj_t nets = mp_obj_new_list(0, NULL); uint8_t _index = 0; // trigger a new network scan uint32_t scanSeconds = MODWLAN_SCAN_PERIOD_S; ASSERT_ON_ERROR(sl_WlanPolicySet(SL_POLICY_SCAN , MODWLAN_SL_SCAN_ENABLE, (_u8 *)&scanSeconds, sizeof(scanSeconds))); // wait for the scan to complete HAL_Delay (MODWLAN_WAIT_FOR_SCAN_MS); do { if (sl_WlanGetNetworkList(_index++, 1, &wlanEntry) <= 0) { break; } // we must skip any duplicated results if (!wlan_scan_result_is_unique(nets, wlanEntry.bssid)) { continue; } mp_obj_t tuple[5]; tuple[0] = mp_obj_new_str((const char *)wlanEntry.ssid, wlanEntry.ssid_len, false); tuple[1] = mp_obj_new_bytes((const byte *)wlanEntry.bssid, SL_BSSID_LENGTH); // 'normalize' the security type if (wlanEntry.sec_type > 2) { wlanEntry.sec_type = 2; } tuple[2] = mp_obj_new_int(wlanEntry.sec_type); tuple[3] = mp_const_none; tuple[4] = mp_obj_new_int(wlanEntry.rssi); // add the network to the list mp_obj_list_append(nets, mp_obj_new_attrtuple(wlan_scan_info_fields, 5, tuple)); } while (_index < MODWLAN_SL_MAX_NETWORKS); return nets; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_scan_obj, wlan_scan); /// \method callback(handler, pwrmode) /// Create a callback object associated with WLAN /// min num of arguments is 1 (pwrmode) STATIC mp_obj_t wlan_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[mpcallback_INIT_NUM_ARGS]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args); wlan_obj_t *self = pos_args[0]; mp_obj_t _callback = mpcallback_find(self); // check if any parameters were passed if (kw_args->used > 0 || !_callback) { // check the power mode if (args[4].u_int != PYB_PWR_MODE_LPDS) { // throw an exception since WLAN only supports LPDS mode nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } // create the callback _callback = mpcallback_new (self, args[1].u_obj, &wlan_cb_methods); // enable network wakeup pybsleep_set_wlan_lpds_callback (_callback); } return _callback; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wlan_callback_obj, 1, wlan_callback); /// \method info() /// returns (mode, ssid, security, mac) STATIC mp_obj_t wlan_info (mp_obj_t self_in) { STATIC const qstr wlan_info_fields[] = { MP_QSTR_mode, MP_QSTR_ssid, MP_QSTR_security, MP_QSTR_mac }; mp_obj_t wlan_info[4]; wlan_info[0] = mp_obj_new_int(wlan_obj.mode); wlan_info[1] = wlan_obj.mode != ROLE_STA ? mp_obj_new_str((const char *)wlan_obj.ssid, strlen((const char *)wlan_obj.ssid), false) : MP_OBJ_NEW_QSTR(MP_QSTR_); wlan_info[2] = mp_obj_new_int(wlan_obj.security); wlan_info[3] = mp_obj_new_bytes((const byte *)wlan_obj.mac, SL_BSSID_LENGTH); return mp_obj_new_attrtuple(wlan_info_fields, MP_ARRAY_SIZE(wlan_info), wlan_info); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_info_obj, wlan_info); /// \method connections() /// returns (ssid/name, bssi), name is the P2P name if in this mode STATIC mp_obj_t wlan_connections (mp_obj_t self_in) { mp_obj_t device[2]; mp_obj_t connections = mp_obj_new_list(0, NULL); if (wlan_is_connected()) { device[0] = mp_obj_new_str((const char *)wlan_obj.ssid_o, strlen((const char *)wlan_obj.ssid_o), false); device[1] = mp_obj_new_bytes((const byte *)wlan_obj.bssid, SL_BSSID_LENGTH); // add the device to the list mp_obj_list_append(connections, mp_obj_new_tuple(MP_ARRAY_SIZE(device), device)); } return connections; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(wlan_connections_obj, wlan_connections); STATIC const mp_map_elem_t wlan_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&wlan_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&wlan_scan_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&wlan_disconnect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&wlan_isconnected_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&wlan_ifconfig_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&wlan_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_connections), (mp_obj_t)&wlan_connections_obj }, #if MICROPY_PORT_WLAN_URN { MP_OBJ_NEW_QSTR(MP_QSTR_urn), (mp_obj_t)&wlan_urn_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&wlan_callback_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_OPEN), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_OPEN) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WEP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA_WPA2), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPA_WPA2) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA_ENT), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPA_ENT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPS_PBC), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPS_PBC) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPS_PIN), MP_OBJ_NEW_SMALL_INT(SL_SEC_TYPE_WPS_PIN) }, { MP_OBJ_NEW_QSTR(MP_QSTR_STA), MP_OBJ_NEW_SMALL_INT(ROLE_STA) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AP), MP_OBJ_NEW_SMALL_INT(ROLE_AP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_P2P), MP_OBJ_NEW_SMALL_INT(ROLE_P2P) }, }; STATIC MP_DEFINE_CONST_DICT(wlan_locals_dict, wlan_locals_dict_table); const mod_network_nic_type_t mod_network_nic_type_wlan = { .base = { { &mp_type_type }, .name = MP_QSTR_WLAN, .make_new = wlan_make_new, .locals_dict = (mp_obj_t)&wlan_locals_dict, }, }; STATIC const mp_cb_methods_t wlan_cb_methods = { .init = wlan_callback, .enable = wlan_lpds_callback_enable, .disable = wlan_lpds_callback_disable, }; /******************************************************************************/ // Micro Python bindings; WLAN socket int wlan_gethostbyname(const char *name, mp_uint_t len, uint8_t *out_ip, uint8_t family) { uint32_t ip; int result = sl_NetAppDnsGetHostByName((_i8 *)name, (_u16)len, (_u32*)&ip, (_u8)family); out_ip[0] = ip; out_ip[1] = ip >> 8; out_ip[2] = ip >> 16; out_ip[3] = ip >> 24; return result; } int wlan_socket_socket(mod_network_socket_obj_t *s, int *_errno) { // open the socket int16_t sd = sl_Socket(s->u_param.domain, s->u_param.type, s->u_param.proto); // save the socket descriptor s->sd = sd; if (sd < 0) { *_errno = sd; return -1; } // mark the socket not closed s->closed = false; return 0; } void wlan_socket_close(mod_network_socket_obj_t *s) { // this is to prevent the finalizer to close a socket that failed when being created if (s->sd >= 0) { modusocket_socket_delete(s->sd); sl_Close(s->sd); } s->closed = true; } int wlan_socket_bind(mod_network_socket_obj_t *s, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = sl_Bind(s->sd, &addr, sizeof(addr)); if (ret != 0) { *_errno = ret; return -1; } return 0; } int wlan_socket_listen(mod_network_socket_obj_t *s, mp_int_t backlog, int *_errno) { int ret = sl_Listen(s->sd, backlog); if (ret != 0) { *_errno = ret; return -1; } return 0; } int wlan_socket_accept(mod_network_socket_obj_t *s, mod_network_socket_obj_t *s2, byte *ip, mp_uint_t *port, int *_errno) { // accept incoming connection int16_t sd; sockaddr addr; socklen_t addr_len = sizeof(addr); sd = sl_Accept(s->sd, &addr, &addr_len); // save the socket descriptor s2->sd = sd; if (sd < 0) { *_errno = sd; return -1; } // mark the socket not closed s2->closed = false; // return ip and port UNPACK_SOCKADDR(addr, ip, *port); return 0; } int wlan_socket_connect(mod_network_socket_obj_t *s, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = sl_Connect(s->sd, &addr, sizeof(addr)); if (ret != 0) { *_errno = ret; return -1; } return 0; } int wlan_socket_send(mod_network_socket_obj_t *s, const byte *buf, mp_uint_t len, int *_errno) { mp_int_t bytes = 0; if (len > 0) { bytes = sl_Send(s->sd, (const void *)buf, len, 0); } if (bytes <= 0) { *_errno = bytes; return -1; } return bytes; } int wlan_socket_recv(mod_network_socket_obj_t *s, byte *buf, mp_uint_t len, int *_errno) { // check if the socket is open if (s->closed) { // socket is closed, but the there might be data remaining in the buffer, so check fd_set rfds; FD_ZERO(&rfds); FD_SET(s->sd, &rfds); timeval tv; tv.tv_sec = 0; tv.tv_usec = 2; int nfds = sl_Select(s->sd + 1, &rfds, NULL, NULL, &tv); if (nfds == -1 || !FD_ISSET(s->sd, &rfds)) { // no data waiting, so close the socket and return 0 data wlan_socket_close(s); return 0; } } // cap length at WLAN_MAX_RX_SIZE len = MIN(len, WLAN_MAX_RX_SIZE); // do the recv int ret = sl_Recv(s->sd, buf, len, 0); if (ret < 0) { *_errno = ret; return -1; } return ret; } int wlan_socket_sendto( mod_network_socket_obj_t *s, const byte *buf, mp_uint_t len, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = sl_SendTo(s->sd, (byte*)buf, len, 0, (sockaddr*)&addr, sizeof(addr)); if (ret < 0) { *_errno = ret; return -1; } return ret; } int wlan_socket_recvfrom(mod_network_socket_obj_t *s, byte *buf, mp_uint_t len, byte *ip, mp_uint_t *port, int *_errno) { sockaddr addr; socklen_t addr_len = sizeof(addr); mp_int_t ret = sl_RecvFrom(s->sd, buf, len, 0, &addr, &addr_len); if (ret < 0) { *_errno = ret; return -1; } UNPACK_SOCKADDR(addr, ip, *port); return ret; } int wlan_socket_setsockopt(mod_network_socket_obj_t *socket, mp_uint_t level, mp_uint_t opt, const void *optval, mp_uint_t optlen, int *_errno) { int ret = sl_SetSockOpt(socket->sd, level, opt, optval, optlen); if (ret < 0) { *_errno = ret; return -1; } return 0; } int wlan_socket_settimeout(mod_network_socket_obj_t *s, mp_uint_t timeout_ms, int *_errno) { int ret; if (timeout_ms == 0 || timeout_ms == -1) { int optval; if (timeout_ms == 0) { // set non-blocking mode optval = 1; } else { // set blocking mode optval = 0; } ret = sl_SetSockOpt(s->sd, SOL_SOCKET, SO_NONBLOCKING, &optval, sizeof(optval)); } else { // set timeout ret = sl_SetSockOpt(s->sd, SOL_SOCKET, SO_RCVTIMEO, &timeout_ms, sizeof(timeout_ms)); } if (ret != 0) { *_errno = ret; return -1; } return 0; } int wlan_socket_ioctl (mod_network_socket_obj_t *s, mp_uint_t request, mp_uint_t arg, int *_errno) { mp_int_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = arg; ret = 0; int32_t sd = s->sd; // init fds fd_set rfds, wfds, xfds; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); // set fds if needed if (flags & MP_IOCTL_POLL_RD) { FD_SET(sd, &rfds); // A socked that just closed is available for reading. A call to // recv() returns 0 which is consistent with BSD. if (s->closed) { ret |= MP_IOCTL_POLL_RD; } } if (flags & MP_IOCTL_POLL_WR) { FD_SET(sd, &wfds); } if (flags & MP_IOCTL_POLL_HUP) { FD_SET(sd, &xfds); } // call simplelink select with minimum timeout SlTimeval_t tv; tv.tv_sec = 0; tv.tv_usec = 1; int32_t nfds = sl_Select(sd + 1, &rfds, &wfds, &xfds, &tv); // check for error if (nfds == -1) { *_errno = nfds; return -1; } // check return of select if (FD_ISSET(sd, &rfds)) { ret |= MP_IOCTL_POLL_RD; } if (FD_ISSET(sd, &wfds)) { ret |= MP_IOCTL_POLL_WR; } if (FD_ISSET(sd, &xfds)) { ret |= MP_IOCTL_POLL_HUP; } } else { *_errno = EINVAL; ret = -1; } return ret; }