/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef MICROPY_INCLUDED_PY_OBJ_H #define MICROPY_INCLUDED_PY_OBJ_H #include #include "py/mpconfig.h" #include "py/misc.h" #include "py/qstr.h" #include "py/mpprint.h" #include "py/runtime0.h" // This is the definition of the opaque MicroPython object type. // All concrete objects have an encoding within this type and the // particular encoding is specified by MICROPY_OBJ_REPR. #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D typedef uint64_t mp_obj_t; typedef uint64_t mp_const_obj_t; #else typedef void *mp_obj_t; typedef const void *mp_const_obj_t; #endif // This mp_obj_type_t struct is a concrete MicroPython object which holds info // about a type. See below for actual definition of the struct. typedef struct _mp_obj_type_t mp_obj_type_t; // Anything that wants to be a concrete MicroPython object must have mp_obj_base_t // as its first member (small ints, qstr objs and inline floats are not concrete). struct _mp_obj_base_t { const mp_obj_type_t *type MICROPY_OBJ_BASE_ALIGNMENT; }; typedef struct _mp_obj_base_t mp_obj_base_t; // These fake objects are used to indicate certain things in arguments or return // values, and should only be used when explicitly allowed. // // - MP_OBJ_NULL : used to indicate the absence of an object, or unsupported operation. // - MP_OBJ_STOP_ITERATION : used instead of throwing a StopIteration, for efficiency. // - MP_OBJ_SENTINEL : used for various internal purposes where one needs // an object which is unique from all other objects, including MP_OBJ_NULL. // // For debugging purposes they are all different. For non-debug mode, we alias // as many as we can to MP_OBJ_NULL because it's cheaper to load/compare 0. #if MICROPY_DEBUG_MP_OBJ_SENTINELS #define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0)) #define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)4)) #define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)8)) #else #define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0)) #define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)0)) #define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)4)) #endif // These macros/inline functions operate on objects and depend on the // particular object representation. They are used to query, pack and // unpack small ints, qstrs and full object pointers. #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_A static inline bool mp_obj_is_small_int(mp_const_obj_t o) { return (((mp_int_t)(o)) & 1) != 0; } #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1) #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1)) static inline bool mp_obj_is_qstr(mp_const_obj_t o) { return (((mp_int_t)(o)) & 7) == 2; } #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3) #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 2)) static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) { return (((mp_int_t)(o)) & 7) == 6; } #define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3) #define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 6)) #if MICROPY_PY_BUILTINS_FLOAT #define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj) #define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj) #if MICROPY_PY_MATH_CONSTANTS #define mp_const_float_tau MP_ROM_PTR(&mp_const_float_tau_obj) #define mp_const_float_inf MP_ROM_PTR(&mp_const_float_inf_obj) #define mp_const_float_nan MP_ROM_PTR(&mp_const_float_nan_obj) #endif extern const struct _mp_obj_float_t mp_const_float_e_obj; extern const struct _mp_obj_float_t mp_const_float_pi_obj; #if MICROPY_PY_MATH_CONSTANTS extern const struct _mp_obj_float_t mp_const_float_tau_obj; extern const struct _mp_obj_float_t mp_const_float_inf_obj; extern const struct _mp_obj_float_t mp_const_float_nan_obj; #endif #define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float) mp_float_t mp_obj_float_get(mp_obj_t self_in); mp_obj_t mp_obj_new_float(mp_float_t value); #endif static inline bool mp_obj_is_obj(mp_const_obj_t o) { return (((mp_int_t)(o)) & 3) == 0; } #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_B static inline bool mp_obj_is_small_int(mp_const_obj_t o) { return (((mp_int_t)(o)) & 3) == 1; } #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 2) #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 2) | 1)) static inline bool mp_obj_is_qstr(mp_const_obj_t o) { return (((mp_int_t)(o)) & 7) == 3; } #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3) #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 3)) static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) { return (((mp_int_t)(o)) & 7) == 7; } #define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3) #define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 7)) #if MICROPY_PY_BUILTINS_FLOAT #define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj) #define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj) #if MICROPY_PY_MATH_CONSTANTS #define mp_const_float_tau MP_ROM_PTR(&mp_const_float_tau_obj) #define mp_const_float_inf MP_ROM_PTR(&mp_const_float_inf_obj) #define mp_const_float_nan MP_ROM_PTR(&mp_const_float_nan_obj) #endif extern const struct _mp_obj_float_t mp_const_float_e_obj; extern const struct _mp_obj_float_t mp_const_float_pi_obj; #if MICROPY_PY_MATH_CONSTANTS extern const struct _mp_obj_float_t mp_const_float_tau_obj; extern const struct _mp_obj_float_t mp_const_float_inf_obj; extern const struct _mp_obj_float_t mp_const_float_nan_obj; #endif #define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float) mp_float_t mp_obj_float_get(mp_obj_t self_in); mp_obj_t mp_obj_new_float(mp_float_t value); #endif static inline bool mp_obj_is_obj(mp_const_obj_t o) { return (((mp_int_t)(o)) & 1) == 0; } #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_NONE #error "MICROPY_OBJ_REPR_C requires float to be enabled." #endif static inline bool mp_obj_is_small_int(mp_const_obj_t o) { return (((mp_int_t)(o)) & 1) != 0; } #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1) #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1)) #if MICROPY_PY_BUILTINS_FLOAT #define mp_const_float_e MP_ROM_PTR((mp_obj_t)(((0x402df854 & ~3) | 2) + 0x80800000)) #define mp_const_float_pi MP_ROM_PTR((mp_obj_t)(((0x40490fdb & ~3) | 2) + 0x80800000)) #if MICROPY_PY_MATH_CONSTANTS #define mp_const_float_tau MP_ROM_PTR((mp_obj_t)(((0x40c90fdb & ~3) | 2) + 0x80800000)) #define mp_const_float_inf MP_ROM_PTR((mp_obj_t)(((0x7f800000 & ~3) | 2) + 0x80800000)) #define mp_const_float_nan MP_ROM_PTR((mp_obj_t)(((0xffc00000 & ~3) | 2) + 0x80800000)) #endif static inline bool mp_obj_is_float(mp_const_obj_t o) { // Ensure that 32-bit arch can only use single precision. MP_STATIC_ASSERT(sizeof(mp_float_t) <= sizeof(mp_obj_t)); return (((mp_uint_t)(o)) & 3) == 2 && (((mp_uint_t)(o)) & 0xff800007) != 0x00000006; } static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) { union { mp_float_t f; mp_uint_t u; } num = {.u = ((mp_uint_t)o - 0x80800000) & ~3}; return num.f; } static inline mp_obj_t mp_obj_new_float(mp_float_t f) { union { mp_float_t f; mp_uint_t u; } num = {.f = f}; return (mp_obj_t)(((num.u & ~0x3) | 2) + 0x80800000); } #endif static inline bool mp_obj_is_qstr(mp_const_obj_t o) { return (((mp_uint_t)(o)) & 0xff80000f) == 0x00000006; } #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 4) #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 4) | 0x00000006)) static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) { return (((mp_uint_t)(o)) & 0xff80000f) == 0x0000000e; } #define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 4) #define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 4) | 0xe)) static inline bool mp_obj_is_obj(mp_const_obj_t o) { return (((mp_int_t)(o)) & 3) == 0; } #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D static inline bool mp_obj_is_small_int(mp_const_obj_t o) { return (((uint64_t)(o)) & 0xffff000000000000) == 0x0001000000000000; } #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)((o) << 16)) >> 17) #define MP_OBJ_NEW_SMALL_INT(small_int) (((((uint64_t)(small_int)) & 0x7fffffffffff) << 1) | 0x0001000000000001) static inline bool mp_obj_is_qstr(mp_const_obj_t o) { return (((uint64_t)(o)) & 0xffff000000000000) == 0x0002000000000000; } #define MP_OBJ_QSTR_VALUE(o) ((((uint32_t)(o)) >> 1) & 0xffffffff) #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)(((uint64_t)(((uint32_t)(qst)) << 1)) | 0x0002000000000001)) static inline bool mp_obj_is_immediate_obj(mp_const_obj_t o) { return (((uint64_t)(o)) & 0xffff000000000000) == 0x0003000000000000; } #define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) ((((uint32_t)(o)) >> 46) & 3) #define MP_OBJ_NEW_IMMEDIATE_OBJ(val) (((uint64_t)(val) << 46) | 0x0003000000000000) #if MICROPY_PY_BUILTINS_FLOAT #if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_DOUBLE #error MICROPY_OBJ_REPR_D requires MICROPY_FLOAT_IMPL_DOUBLE #endif #define mp_const_float_e {((mp_obj_t)((uint64_t)0x4005bf0a8b145769 + 0x8004000000000000))} #define mp_const_float_pi {((mp_obj_t)((uint64_t)0x400921fb54442d18 + 0x8004000000000000))} #if MICROPY_PY_MATH_CONSTANTS #define mp_const_float_tau {((mp_obj_t)((uint64_t)0x401921fb54442d18 + 0x8004000000000000))} #define mp_const_float_inf {((mp_obj_t)((uint64_t)0x7ff0000000000000 + 0x8004000000000000))} #define mp_const_float_nan {((mp_obj_t)((uint64_t)0xfff8000000000000 + 0x8004000000000000))} #endif static inline bool mp_obj_is_float(mp_const_obj_t o) { return ((uint64_t)(o) & 0xfffc000000000000) != 0; } static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) { union { mp_float_t f; uint64_t r; } num = {.r = o - 0x8004000000000000}; return num.f; } static inline mp_obj_t mp_obj_new_float(mp_float_t f) { union { mp_float_t f; uint64_t r; } num = {.f = f}; return num.r + 0x8004000000000000; } #endif static inline bool mp_obj_is_obj(mp_const_obj_t o) { return (((uint64_t)(o)) & 0xffff000000000000) == 0x0000000000000000; } #define MP_OBJ_TO_PTR(o) ((void *)(uintptr_t)(o)) #define MP_OBJ_FROM_PTR(p) ((mp_obj_t)((uintptr_t)(p))) // rom object storage needs special handling to widen 32-bit pointer to 64-bits typedef union _mp_rom_obj_t { uint64_t u64; struct { const void *lo, *hi; } u32; } mp_rom_obj_t; #define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)} #define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)} #if MP_ENDIANNESS_LITTLE #define MP_ROM_PTR(p) {.u32 = {.lo = (p), .hi = NULL}} #else #define MP_ROM_PTR(p) {.u32 = {.lo = NULL, .hi = (p)}} #endif #endif // Macros to convert between mp_obj_t and concrete object types. // These are identity operations in MicroPython, but ability to override // these operations are provided to experiment with other methods of // object representation and memory management. // Cast mp_obj_t to object pointer #ifndef MP_OBJ_TO_PTR #define MP_OBJ_TO_PTR(o) ((void *)(o)) #endif // Cast object pointer to mp_obj_t #ifndef MP_OBJ_FROM_PTR #define MP_OBJ_FROM_PTR(p) ((mp_obj_t)(p)) #endif // Macros to create objects that are stored in ROM. #ifndef MP_ROM_NONE #if MICROPY_OBJ_IMMEDIATE_OBJS #define MP_ROM_NONE mp_const_none #else #define MP_ROM_NONE MP_ROM_PTR(&mp_const_none_obj) #endif #endif #ifndef MP_ROM_FALSE #if MICROPY_OBJ_IMMEDIATE_OBJS #define MP_ROM_FALSE mp_const_false #define MP_ROM_TRUE mp_const_true #else #define MP_ROM_FALSE MP_ROM_PTR(&mp_const_false_obj) #define MP_ROM_TRUE MP_ROM_PTR(&mp_const_true_obj) #endif #endif #ifndef MP_ROM_INT typedef mp_const_obj_t mp_rom_obj_t; #define MP_ROM_INT(i) MP_OBJ_NEW_SMALL_INT(i) #define MP_ROM_QSTR(q) MP_OBJ_NEW_QSTR(q) #define MP_ROM_PTR(p) (p) /* for testing typedef struct _mp_rom_obj_t { mp_const_obj_t o; } mp_rom_obj_t; #define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)} #define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)} #define MP_ROM_PTR(p) {.o = p} */ #endif // These macros are used to declare and define constant function objects // You can put "static" in front of the definitions to make them local #define MP_DECLARE_CONST_FUN_OBJ_0(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_1(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_2(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_3(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_VAR(obj_name) extern const mp_obj_fun_builtin_var_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name) extern const mp_obj_fun_builtin_var_t obj_name #define MP_DECLARE_CONST_FUN_OBJ_KW(obj_name) extern const mp_obj_fun_builtin_var_t obj_name #define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below #define MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, takes_kw) ((uint32_t)((((uint32_t)(n_args_min)) << 17) | (((uint32_t)(n_args_max)) << 1) | ((takes_kw) ? 1 : 0))) #define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) \ const mp_obj_fun_builtin_fixed_t obj_name = \ {{&mp_type_fun_builtin_0}, .fun._0 = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) \ const mp_obj_fun_builtin_fixed_t obj_name = \ {{&mp_type_fun_builtin_1}, .fun._1 = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) \ const mp_obj_fun_builtin_fixed_t obj_name = \ {{&mp_type_fun_builtin_2}, .fun._2 = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) \ const mp_obj_fun_builtin_fixed_t obj_name = \ {{&mp_type_fun_builtin_3}, .fun._3 = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) \ const mp_obj_fun_builtin_var_t obj_name = \ {{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, MP_OBJ_FUN_ARGS_MAX, false), .fun.var = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) \ const mp_obj_fun_builtin_var_t obj_name = \ {{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, false), .fun.var = fun_name} #define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) \ const mp_obj_fun_builtin_var_t obj_name = \ {{&mp_type_fun_builtin_var}, MP_OBJ_FUN_MAKE_SIG(n_args_min, MP_OBJ_FUN_ARGS_MAX, true), .fun.kw = fun_name} // These macros are used to define constant map/dict objects // You can put "static" in front of the definition to make it local #define MP_DEFINE_CONST_MAP(map_name, table_name) \ const mp_map_t map_name = { \ .all_keys_are_qstrs = 1, \ .is_fixed = 1, \ .is_ordered = 1, \ .used = MP_ARRAY_SIZE(table_name), \ .alloc = MP_ARRAY_SIZE(table_name), \ .table = (mp_map_elem_t *)(mp_rom_map_elem_t *)table_name, \ } #define MP_DEFINE_CONST_DICT_WITH_SIZE(dict_name, table_name, n) \ const mp_obj_dict_t dict_name = { \ .base = {&mp_type_dict}, \ .map = { \ .all_keys_are_qstrs = 1, \ .is_fixed = 1, \ .is_ordered = 1, \ .used = n, \ .alloc = n, \ .table = (mp_map_elem_t *)(mp_rom_map_elem_t *)table_name, \ }, \ } #define MP_DEFINE_CONST_DICT(dict_name, table_name) MP_DEFINE_CONST_DICT_WITH_SIZE(dict_name, table_name, MP_ARRAY_SIZE(table_name)) // These macros are used to declare and define constant staticmethod and classmethod objects // You can put "static" in front of the definitions to make them local #define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name #define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name #define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name} #define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name} #ifndef NO_QSTR // Declare a module as a builtin, processed by makemoduledefs.py // param module_name: MP_QSTR_ // param obj_module: mp_obj_module_t instance #define MP_REGISTER_MODULE(module_name, obj_module) // As above, but allow this module to be extended from the filesystem. #define MP_REGISTER_EXTENSIBLE_MODULE(module_name, obj_module) // Add a custom handler for a builtin module that will be called to delegate // failed attribute lookups. #define MP_REGISTER_MODULE_DELEGATION(obj_module, fun_name) // Declare a root pointer (to avoid garbage collection of a global static variable). // param variable_declaration: a valid C variable declaration #define MP_REGISTER_ROOT_POINTER(variable_declaration) #endif // NO_QSTR // Underlying map/hash table implementation (not dict object or map function) typedef struct _mp_map_elem_t { mp_obj_t key; mp_obj_t value; } mp_map_elem_t; typedef struct _mp_rom_map_elem_t { mp_rom_obj_t key; mp_rom_obj_t value; } mp_rom_map_elem_t; typedef struct _mp_map_t { size_t all_keys_are_qstrs : 1; size_t is_fixed : 1; // if set, table is fixed/read-only and can't be modified size_t is_ordered : 1; // if set, table is an ordered array, not a hash map size_t used : (8 * sizeof(size_t) - 3); size_t alloc; mp_map_elem_t *table; } mp_map_t; // mp_set_lookup requires these constants to have the values they do typedef enum _mp_map_lookup_kind_t { MP_MAP_LOOKUP = 0, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND = 1, MP_MAP_LOOKUP_REMOVE_IF_FOUND = 2, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND_OR_REMOVE_IF_FOUND = 3, // only valid for mp_set_lookup } mp_map_lookup_kind_t; static inline bool mp_map_slot_is_filled(const mp_map_t *map, size_t pos) { assert(pos < map->alloc); return (map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL; } void mp_map_init(mp_map_t *map, size_t n); void mp_map_init_fixed_table(mp_map_t *map, size_t n, const mp_obj_t *table); mp_map_t *mp_map_new(size_t n); void mp_map_deinit(mp_map_t *map); void mp_map_free(mp_map_t *map); mp_map_elem_t *mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind); void mp_map_clear(mp_map_t *map); void mp_map_dump(mp_map_t *map); // Underlying set implementation (not set object) typedef struct _mp_set_t { size_t alloc; size_t used; mp_obj_t *table; } mp_set_t; static inline bool mp_set_slot_is_filled(const mp_set_t *set, size_t pos) { return (set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL; } void mp_set_init(mp_set_t *set, size_t n); mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind); mp_obj_t mp_set_remove_first(mp_set_t *set); void mp_set_clear(mp_set_t *set); // Type definitions for methods typedef mp_obj_t (*mp_fun_0_t)(void); typedef mp_obj_t (*mp_fun_1_t)(mp_obj_t); typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t); typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t); typedef mp_obj_t (*mp_fun_var_t)(size_t n, const mp_obj_t *); // mp_fun_kw_t takes mp_map_t* (and not const mp_map_t*) to ease passing // this arg to mp_map_lookup(). typedef mp_obj_t (*mp_fun_kw_t)(size_t n, const mp_obj_t *, mp_map_t *); // Flags for type behaviour (mp_obj_type_t.flags) // If MP_TYPE_FLAG_EQ_NOT_REFLEXIVE is clear then __eq__ is reflexive (A==A returns True). // If MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE is clear then the type can't be equal to an // instance of any different class that also clears this flag. If this flag is set // then the type may check for equality against a different type. // If MP_TYPE_FLAG_EQ_HAS_NEQ_TEST is clear then the type only implements the __eq__ // operator and not the __ne__ operator. If it's set then __ne__ may be implemented. // If MP_TYPE_FLAG_BINDS_SELF is set then the type as a method binds self as the first arg. // If MP_TYPE_FLAG_BUILTIN_FUN is set then the type is a built-in function type. // MP_TYPE_FLAG_ITER_IS_GETITER is a no-op flag that means the default behaviour for the // iter slot and it's the getiter function. // If MP_TYPE_FLAG_ITER_IS_ITERNEXT is set then the "iter" slot is the iternext // function and getiter will be automatically implemented as "return self". // If MP_TYPE_FLAG_ITER_IS_CUSTOM is set then the "iter" slot is a pointer to a // mp_getiter_iternext_custom_t struct instance (with both .getiter and .iternext set). // If MP_TYPE_FLAG_ITER_IS_STREAM is set then the type implicitly gets a "return self" // getiter, and mp_stream_unbuffered_iter for iternext. // If MP_TYPE_FLAG_INSTANCE_TYPE is set then this is an instance type (i.e. defined in Python). #define MP_TYPE_FLAG_NONE (0x0000) #define MP_TYPE_FLAG_IS_SUBCLASSED (0x0001) #define MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS (0x0002) #define MP_TYPE_FLAG_EQ_NOT_REFLEXIVE (0x0004) #define MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE (0x0008) #define MP_TYPE_FLAG_EQ_HAS_NEQ_TEST (0x0010) #define MP_TYPE_FLAG_BINDS_SELF (0x0020) #define MP_TYPE_FLAG_BUILTIN_FUN (0x0040) #define MP_TYPE_FLAG_ITER_IS_GETITER (0x0000) #define MP_TYPE_FLAG_ITER_IS_ITERNEXT (0x0080) #define MP_TYPE_FLAG_ITER_IS_CUSTOM (0x0100) #define MP_TYPE_FLAG_ITER_IS_STREAM (MP_TYPE_FLAG_ITER_IS_ITERNEXT | MP_TYPE_FLAG_ITER_IS_CUSTOM) #define MP_TYPE_FLAG_INSTANCE_TYPE (0x0200) typedef enum { PRINT_STR = 0, PRINT_REPR = 1, PRINT_EXC = 2, // Special format for printing exception in unhandled exception message PRINT_JSON = 3, PRINT_RAW = 4, // Special format for printing bytes as an undercorated string PRINT_EXC_SUBCLASS = 0x80, // Internal flag for printing exception subclasses } mp_print_kind_t; typedef struct _mp_obj_iter_buf_t { mp_obj_base_t base; mp_obj_t buf[3]; } mp_obj_iter_buf_t; // The number of slots that an mp_obj_iter_buf_t needs on the Python value stack. // It's rounded up in case mp_obj_base_t is smaller than mp_obj_t (eg for OBJ_REPR_D). #define MP_OBJ_ITER_BUF_NSLOTS ((sizeof(mp_obj_iter_buf_t) + sizeof(mp_obj_t) - 1) / sizeof(mp_obj_t)) typedef void (*mp_print_fun_t)(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind); typedef mp_obj_t (*mp_make_new_fun_t)(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args); typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, size_t n_args, size_t n_kw, const mp_obj_t *args); typedef mp_obj_t (*mp_unary_op_fun_t)(mp_unary_op_t op, mp_obj_t); typedef mp_obj_t (*mp_binary_op_fun_t)(mp_binary_op_t op, mp_obj_t, mp_obj_t); typedef void (*mp_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest); typedef mp_obj_t (*mp_subscr_fun_t)(mp_obj_t self_in, mp_obj_t index, mp_obj_t value); typedef mp_obj_t (*mp_getiter_fun_t)(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf); typedef mp_fun_1_t mp_iternext_fun_t; // For MP_TYPE_FLAG_ITER_IS_CUSTOM, the "getiter" slot points to an instance of this type. typedef struct _mp_getiter_iternext_custom_t { mp_getiter_fun_t getiter; mp_iternext_fun_t iternext; } mp_getiter_iternext_custom_t; // Buffer protocol typedef struct _mp_buffer_info_t { void *buf; // can be NULL if len == 0 size_t len; // in bytes int typecode; // as per binary.h } mp_buffer_info_t; #define MP_BUFFER_READ (1) #define MP_BUFFER_WRITE (2) #define MP_BUFFER_RW (MP_BUFFER_READ | MP_BUFFER_WRITE) #define MP_BUFFER_RAISE_IF_UNSUPPORTED (4) typedef mp_int_t (*mp_buffer_fun_t)(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags); bool mp_get_buffer(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags); static inline void mp_get_buffer_raise(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags) { mp_get_buffer(obj, bufinfo, flags | MP_BUFFER_RAISE_IF_UNSUPPORTED); } // This struct will be updated to become a variable sized struct. In order to // use this as a member, or allocate dynamically, use the mp_obj_empty_type_t // or mp_obj_full_type_t structs below (which must be kept in sync). struct _mp_obj_type_t { // A type is an object so must start with this entry, which points to mp_type_type. mp_obj_base_t base; // Flags associated with this type. uint16_t flags; // The name of this type, a qstr. uint16_t name; // Slots: For the rest of the fields, the slot index points to the // relevant function in the variable-length "slots" field. Ideally these // would be only 4 bits, but the extra overhead of accessing them adds // more code, and we also need to be able to take the address of them for // mp_obj_class_lookup. // Corresponds to __new__ and __init__ special methods, to make an instance of the type. uint8_t slot_index_make_new; // Corresponds to __repr__ and __str__ special methods. uint8_t slot_index_print; // Corresponds to __call__ special method, ie T(...). uint8_t slot_index_call; // Implements unary and binary operations. // Can return MP_OBJ_NULL if the operation is not supported. uint8_t slot_index_unary_op; uint8_t slot_index_binary_op; // Implements load, store and delete attribute. // // dest[0] = MP_OBJ_NULL means load // return: for fail, do nothing // for fail but continue lookup in locals_dict, dest[1] = MP_OBJ_SENTINEL // for attr, dest[0] = value // for method, dest[0] = method, dest[1] = self // // dest[0,1] = {MP_OBJ_SENTINEL, MP_OBJ_NULL} means delete // dest[0,1] = {MP_OBJ_SENTINEL, object} means store // return: for fail, do nothing // for success set dest[0] = MP_OBJ_NULL uint8_t slot_index_attr; // Implements load, store and delete subscripting: // - value = MP_OBJ_SENTINEL means load // - value = MP_OBJ_NULL means delete // - all other values mean store the value // Can return MP_OBJ_NULL if operation not supported. uint8_t slot_index_subscr; // This slot's behaviour depends on the MP_TYPE_FLAG_ITER_IS_* flags above. // - If MP_TYPE_FLAG_ITER_IS_GETITER flag is set, then this corresponds to the __iter__ // special method (of type mp_getiter_fun_t). Can use the given mp_obj_iter_buf_t // to store the iterator object, otherwise can return a pointer to an object on the heap. // - If MP_TYPE_FLAG_ITER_IS_ITERNEXT is set, then this corresponds to __next__ special method. // May return MP_OBJ_STOP_ITERATION as an optimisation instead of raising StopIteration() // with no args. The type will implicitly implement getiter as "return self". // - If MP_TYPE_FLAG_ITER_IS_CUSTOM is set, then this slot must point to an // mp_getiter_iternext_custom_t instance with both the getiter and iternext fields set. // - If MP_TYPE_FLAG_ITER_IS_STREAM is set, this this slot should be unset. uint8_t slot_index_iter; // Implements the buffer protocol if supported by this type. uint8_t slot_index_buffer; // One of disjoint protocols (interfaces), like mp_stream_p_t, etc. uint8_t slot_index_protocol; // A pointer to the parents of this type: // - 0 parents: pointer is NULL (object is implicitly the single parent) // - 1 parent: a pointer to the type of that parent // - 2 or more parents: pointer to a tuple object containing the parent types uint8_t slot_index_parent; // A dict mapping qstrs to objects local methods/constants/etc. uint8_t slot_index_locals_dict; const void *slots[]; }; // Non-variable sized versions of mp_obj_type_t to be used as a member // in other structs or for dynamic allocation. The fields are exactly // as in mp_obj_type_t, but with a fixed size for the flexible array // members. typedef struct _mp_obj_empty_type_t { mp_obj_base_t base; uint16_t flags; uint16_t name; uint8_t slot_index_make_new; uint8_t slot_index_print; uint8_t slot_index_call; uint8_t slot_index_unary_op; uint8_t slot_index_binary_op; uint8_t slot_index_attr; uint8_t slot_index_subscr; uint8_t slot_index_iter; uint8_t slot_index_buffer; uint8_t slot_index_protocol; uint8_t slot_index_parent; uint8_t slot_index_locals_dict; // No slots member. } mp_obj_empty_type_t; typedef struct _mp_obj_full_type_t { mp_obj_base_t base; uint16_t flags; uint16_t name; uint8_t slot_index_make_new; uint8_t slot_index_print; uint8_t slot_index_call; uint8_t slot_index_unary_op; uint8_t slot_index_binary_op; uint8_t slot_index_attr; uint8_t slot_index_subscr; uint8_t slot_index_iter; uint8_t slot_index_buffer; uint8_t slot_index_protocol; uint8_t slot_index_parent; uint8_t slot_index_locals_dict; // Explicitly add 12 slots. const void *slots[11]; } mp_obj_full_type_t; #define _MP_OBJ_TYPE_SLOT_TYPE_make_new (mp_make_new_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_print (mp_print_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_call (mp_call_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_unary_op (mp_unary_op_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_binary_op (mp_binary_op_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_attr (mp_attr_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_subscr (mp_subscr_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_iter (const void *) #define _MP_OBJ_TYPE_SLOT_TYPE_buffer (mp_buffer_fun_t) #define _MP_OBJ_TYPE_SLOT_TYPE_protocol (const void *) #define _MP_OBJ_TYPE_SLOT_TYPE_parent (const void *) #define _MP_OBJ_TYPE_SLOT_TYPE_locals_dict (struct _mp_obj_dict_t *) // Implementation of MP_DEFINE_CONST_OBJ_TYPE for each number of arguments. // Do not use these directly, instead use MP_DEFINE_CONST_OBJ_TYPE. // Generated with: // for i in range(13): // print(f"#define MP_DEFINE_CONST_OBJ_TYPE_NARGS_{i}(_struct_type, _typename, _name, _flags{''.join(f', f{j+1}, v{j+1}' for j in range(i))}) const _struct_type _typename = {{ .base = {{ &mp_type_type }}, .name = _name, .flags = _flags{''.join(f', .slot_index_##f{j+1} = {j+1}' for j in range(i))}{', .slots = { ' + ''.join(f'v{j+1}, ' for j in range(i)) + '}' if i else '' } }}") #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_0(_struct_type, _typename, _name, _flags) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_1(_struct_type, _typename, _name, _flags, f1, v1) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slots = { v1, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_2(_struct_type, _typename, _name, _flags, f1, v1, f2, v2) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slots = { v1, v2, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_3(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slots = { v1, v2, v3, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_4(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slots = { v1, v2, v3, v4, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_5(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slots = { v1, v2, v3, v4, v5, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_6(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slots = { v1, v2, v3, v4, v5, v6, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_7(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slots = { v1, v2, v3, v4, v5, v6, v7, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_8(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7, f8, v8) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slot_index_##f8 = 8, .slots = { v1, v2, v3, v4, v5, v6, v7, v8, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_9(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7, f8, v8, f9, v9) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slot_index_##f8 = 8, .slot_index_##f9 = 9, .slots = { v1, v2, v3, v4, v5, v6, v7, v8, v9, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_10(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7, f8, v8, f9, v9, f10, v10) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slot_index_##f8 = 8, .slot_index_##f9 = 9, .slot_index_##f10 = 10, .slots = { v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_11(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7, f8, v8, f9, v9, f10, v10, f11, v11) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slot_index_##f8 = 8, .slot_index_##f9 = 9, .slot_index_##f10 = 10, .slot_index_##f11 = 11, .slots = { v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, } } #define MP_DEFINE_CONST_OBJ_TYPE_NARGS_12(_struct_type, _typename, _name, _flags, f1, v1, f2, v2, f3, v3, f4, v4, f5, v5, f6, v6, f7, v7, f8, v8, f9, v9, f10, v10, f11, v11, f12, v12) const _struct_type _typename = { .base = { &mp_type_type }, .name = _name, .flags = _flags, .slot_index_##f1 = 1, .slot_index_##f2 = 2, .slot_index_##f3 = 3, .slot_index_##f4 = 4, .slot_index_##f5 = 5, .slot_index_##f6 = 6, .slot_index_##f7 = 7, .slot_index_##f8 = 8, .slot_index_##f9 = 9, .slot_index_##f10 = 10, .slot_index_##f11 = 11, .slot_index_##f12 = 12, .slots = { v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, } } // Because the mp_obj_type_t instances are in (zero-initialised) ROM, we take // slot_index_foo=0 to mean that the slot is unset. This also simplifies checking // if the slot is set. That means that we need to store index+1 in slot_index_foo // though and then access it as slots[slot_index_foo - 1]. This is an implementation // detail, the user of these macros doesn't need to be aware of it, and when using // MP_OBJ_TYPE_OFFSETOF_SLOT you should use zero-based indexing. #define MP_OBJ_TYPE_HAS_SLOT(t, f) ((t)->slot_index_##f) #define MP_OBJ_TYPE_GET_SLOT(t, f) (_MP_OBJ_TYPE_SLOT_TYPE_##f(t)->slots[(t)->slot_index_##f - 1]) #define MP_OBJ_TYPE_GET_SLOT_OR_NULL(t, f) (_MP_OBJ_TYPE_SLOT_TYPE_##f(MP_OBJ_TYPE_HAS_SLOT(t, f) ? MP_OBJ_TYPE_GET_SLOT(t, f) : NULL)) #define MP_OBJ_TYPE_SET_SLOT(t, f, v, n) ((t)->slot_index_##f = (n) + 1, (t)->slots[(n)] = (void *)v) #define MP_OBJ_TYPE_OFFSETOF_SLOT(f) (offsetof(mp_obj_type_t, slot_index_##f)) #define MP_OBJ_TYPE_HAS_SLOT_BY_OFFSET(t, offset) (*(uint8_t *)((char *)(t) + (offset)) != 0) // Workaround for https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-experimental-overview?view=msvc-160#macro-arguments-are-unpacked #define MP_DEFINE_CONST_OBJ_TYPE_EXPAND(x) x // This macro evaluates to MP_DEFINE_CONST_OBJ_TYPE_NARGS_##N, where N is the value // of the 29th argument (29 is 13*2 + 3). #define MP_DEFINE_CONST_OBJ_TYPE_NARGS(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, N, ...) MP_DEFINE_CONST_OBJ_TYPE_NARGS_##N // This macros is used to define a object type in ROM. // Invoke as MP_DEFINE_CONST_OBJ_TYPE(_typename, _name, _flags, _make_new [, slot, func]*) // It uses the number of arguments to select which MP_DEFINE_CONST_OBJ_TYPE_* // macro to use based on the number of arguments. It works by shifting the // numeric values 12, 11, ... 0 by the number of arguments, such that the // 29th argument ends up being the number to use. The _INV values are // placeholders because the slot arguments come in pairs. #define MP_DEFINE_CONST_OBJ_TYPE(...) MP_DEFINE_CONST_OBJ_TYPE_EXPAND(MP_DEFINE_CONST_OBJ_TYPE_NARGS(__VA_ARGS__, _INV, 12, _INV, 11, _INV, 10, _INV, 9, _INV, 8, _INV, 7, _INV, 6, _INV, 5, _INV, 4, _INV, 3, _INV, 2, _INV, 1, _INV, 0)(mp_obj_type_t, __VA_ARGS__)) // Constant types, globally accessible extern const mp_obj_type_t mp_type_type; extern const mp_obj_type_t mp_type_object; extern const mp_obj_type_t mp_type_NoneType; extern const mp_obj_type_t mp_type_bool; extern const mp_obj_type_t mp_type_int; extern const mp_obj_type_t mp_type_str; extern const mp_obj_type_t mp_type_bytes; extern const mp_obj_type_t mp_type_bytearray; extern const mp_obj_type_t mp_type_memoryview; extern const mp_obj_type_t mp_type_float; extern const mp_obj_type_t mp_type_complex; extern const mp_obj_type_t mp_type_tuple; extern const mp_obj_type_t mp_type_list; extern const mp_obj_type_t mp_type_map; // map (the python builtin, not the dict implementation detail) extern const mp_obj_type_t mp_type_enumerate; extern const mp_obj_type_t mp_type_filter; extern const mp_obj_type_t mp_type_deque; extern const mp_obj_type_t mp_type_dict; extern const mp_obj_type_t mp_type_ordereddict; extern const mp_obj_type_t mp_type_range; extern const mp_obj_type_t mp_type_set; extern const mp_obj_type_t mp_type_frozenset; extern const mp_obj_type_t mp_type_slice; extern const mp_obj_type_t mp_type_zip; extern const mp_obj_type_t mp_type_array; extern const mp_obj_type_t mp_type_super; extern const mp_obj_type_t mp_type_gen_wrap; extern const mp_obj_type_t mp_type_native_gen_wrap; extern const mp_obj_type_t mp_type_gen_instance; extern const mp_obj_type_t mp_type_fun_builtin_0; extern const mp_obj_type_t mp_type_fun_builtin_1; extern const mp_obj_type_t mp_type_fun_builtin_2; extern const mp_obj_type_t mp_type_fun_builtin_3; extern const mp_obj_type_t mp_type_fun_builtin_var; extern const mp_obj_type_t mp_type_fun_bc; extern const mp_obj_type_t mp_type_fun_native; extern const mp_obj_type_t mp_type_fun_viper; extern const mp_obj_type_t mp_type_fun_asm; extern const mp_obj_type_t mp_type_module; extern const mp_obj_type_t mp_type_staticmethod; extern const mp_obj_type_t mp_type_classmethod; extern const mp_obj_type_t mp_type_bound_meth; extern const mp_obj_type_t mp_type_property; extern const mp_obj_type_t mp_type_stringio; extern const mp_obj_type_t mp_type_bytesio; extern const mp_obj_type_t mp_type_reversed; extern const mp_obj_type_t mp_type_polymorph_iter; #if MICROPY_ENABLE_FINALISER extern const mp_obj_type_t mp_type_polymorph_iter_with_finaliser; #endif // Exceptions extern const mp_obj_type_t mp_type_BaseException; extern const mp_obj_type_t mp_type_ArithmeticError; extern const mp_obj_type_t mp_type_AssertionError; extern const mp_obj_type_t mp_type_AttributeError; extern const mp_obj_type_t mp_type_EOFError; extern const mp_obj_type_t mp_type_Exception; extern const mp_obj_type_t mp_type_GeneratorExit; extern const mp_obj_type_t mp_type_ImportError; extern const mp_obj_type_t mp_type_IndentationError; extern const mp_obj_type_t mp_type_IndexError; extern const mp_obj_type_t mp_type_KeyboardInterrupt; extern const mp_obj_type_t mp_type_KeyError; extern const mp_obj_type_t mp_type_LookupError; extern const mp_obj_type_t mp_type_MemoryError; extern const mp_obj_type_t mp_type_NameError; extern const mp_obj_type_t mp_type_NotImplementedError; extern const mp_obj_type_t mp_type_OSError; extern const mp_obj_type_t mp_type_OverflowError; extern const mp_obj_type_t mp_type_RuntimeError; extern const mp_obj_type_t mp_type_StopAsyncIteration; extern const mp_obj_type_t mp_type_StopIteration; extern const mp_obj_type_t mp_type_SyntaxError; extern const mp_obj_type_t mp_type_SystemExit; extern const mp_obj_type_t mp_type_TypeError; extern const mp_obj_type_t mp_type_UnicodeError; extern const mp_obj_type_t mp_type_ValueError; extern const mp_obj_type_t mp_type_ViperTypeError; extern const mp_obj_type_t mp_type_ZeroDivisionError; // Constant objects, globally accessible: None, False, True // These should always be accessed via the below macros. #if MICROPY_OBJ_IMMEDIATE_OBJS // None is even while False/True are odd so their types can be distinguished with 1 bit. #define mp_const_none MP_OBJ_NEW_IMMEDIATE_OBJ(0) #define mp_const_false MP_OBJ_NEW_IMMEDIATE_OBJ(1) #define mp_const_true MP_OBJ_NEW_IMMEDIATE_OBJ(3) #else #define mp_const_none (MP_OBJ_FROM_PTR(&mp_const_none_obj)) #define mp_const_false (MP_OBJ_FROM_PTR(&mp_const_false_obj)) #define mp_const_true (MP_OBJ_FROM_PTR(&mp_const_true_obj)) extern const struct _mp_obj_none_t mp_const_none_obj; extern const struct _mp_obj_bool_t mp_const_false_obj; extern const struct _mp_obj_bool_t mp_const_true_obj; #endif // Constant objects, globally accessible: b'', (), {}, Ellipsis, NotImplemented, GeneratorExit() // The below macros are for convenience only. #define mp_const_empty_bytes (MP_OBJ_FROM_PTR(&mp_const_empty_bytes_obj)) #define mp_const_empty_tuple (MP_OBJ_FROM_PTR(&mp_const_empty_tuple_obj)) #define mp_const_notimplemented (MP_OBJ_FROM_PTR(&mp_const_notimplemented_obj)) extern const struct _mp_obj_str_t mp_const_empty_bytes_obj; extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj; extern const struct _mp_obj_dict_t mp_const_empty_dict_obj; extern const struct _mp_obj_singleton_t mp_const_ellipsis_obj; extern const struct _mp_obj_singleton_t mp_const_notimplemented_obj; extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj; // Fixed empty map. Useful when calling keyword-receiving functions // without any keywords from C, etc. #define mp_const_empty_map (mp_const_empty_dict_obj.map) // General API for objects // Helper versions of m_new_obj when you need to immediately set base.type. // Implementing this as a call rather than inline saves 8 bytes per usage. #define mp_obj_malloc(struct_type, obj_type) ((struct_type *)mp_obj_malloc_helper(sizeof(struct_type), obj_type)) #define mp_obj_malloc_var(struct_type, var_field, var_type, var_num, obj_type) ((struct_type *)mp_obj_malloc_helper(offsetof(struct_type, var_field) + sizeof(var_type) * (var_num), obj_type)) void *mp_obj_malloc_helper(size_t num_bytes, const mp_obj_type_t *type); // Object allocation macros for allocating objects that have a finaliser. #if MICROPY_ENABLE_FINALISER #define mp_obj_malloc_with_finaliser(struct_type, obj_type) ((struct_type *)mp_obj_malloc_with_finaliser_helper(sizeof(struct_type), obj_type)) #define mp_obj_malloc_var_with_finaliser(struct_type, var_type, var_num, obj_type) ((struct_type *)mp_obj_malloc_with_finaliser_helper(sizeof(struct_type) + sizeof(var_type) * (var_num), obj_type)) void *mp_obj_malloc_with_finaliser_helper(size_t num_bytes, const mp_obj_type_t *type); #else #define mp_obj_malloc_with_finaliser(struct_type, obj_type) mp_obj_malloc(struct_type, obj_type) #define mp_obj_malloc_var_with_finaliser(struct_type, var_type, var_num, obj_type) mp_obj_malloc_var(struct_type, var_type, var_num, obj_type) #endif // These macros are derived from more primitive ones and are used to // check for more specific object types. // Note: these are kept as macros because inline functions sometimes use much // more code space than the equivalent macros, depending on the compiler. // don't use mp_obj_is_exact_type directly; use mp_obj_is_type which provides additional safety checks. // use the former only if you need to bypass these checks (because you've already checked everything else) #define mp_obj_is_exact_type(o, t) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type == (t))) // Type checks are split to a separate, constant result macro. This is so it doesn't hinder the compilers's // optimizations (other tricks like using ({ expr; exper; }) or (exp, expr, expr) in mp_obj_is_type() result // in missed optimizations) #define mp_type_assert_not_bool_int_str_nonetype(t) ( \ MP_STATIC_ASSERT_NONCONSTEXPR((t) != &mp_type_bool), assert((t) != &mp_type_bool), \ MP_STATIC_ASSERT_NONCONSTEXPR((t) != &mp_type_int), assert((t) != &mp_type_int), \ MP_STATIC_ASSERT_NONCONSTEXPR((t) != &mp_type_str), assert((t) != &mp_type_str), \ MP_STATIC_ASSERT_NONCONSTEXPR((t) != &mp_type_NoneType), assert((t) != &mp_type_NoneType), \ 1) #define mp_obj_is_type(o, t) (mp_type_assert_not_bool_int_str_nonetype(t) && mp_obj_is_exact_type(o, t)) #if MICROPY_OBJ_IMMEDIATE_OBJS // bool's are immediates, not real objects, so test for the 2 possible values. #define mp_obj_is_bool(o) ((o) == mp_const_false || (o) == mp_const_true) #else #define mp_obj_is_bool(o) mp_obj_is_exact_type(o, &mp_type_bool) #endif #define mp_obj_is_int(o) (mp_obj_is_small_int(o) || mp_obj_is_exact_type(o, &mp_type_int)) #define mp_obj_is_str(o) (mp_obj_is_qstr(o) || mp_obj_is_exact_type(o, &mp_type_str)) #define mp_obj_is_str_or_bytes(o) (mp_obj_is_qstr(o) || (mp_obj_is_obj(o) && MP_OBJ_TYPE_GET_SLOT_OR_NULL(((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type, binary_op) == mp_obj_str_binary_op)) bool mp_obj_is_dict_or_ordereddict(mp_obj_t o); #define mp_obj_is_fun(o) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->name == MP_QSTR_function)) mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict); static inline mp_obj_t mp_obj_new_bool(mp_int_t x) { return x ? mp_const_true : mp_const_false; } mp_obj_t mp_obj_new_cell(mp_obj_t obj); mp_obj_t mp_obj_new_int(mp_int_t value); mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value); mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base); mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception) mp_obj_t mp_obj_new_int_from_ull(unsigned long long val); // this must return a multi-precision integer object (or raise an overflow exception) mp_obj_t mp_obj_new_str(const char *data, size_t len); // will check utf-8 (raises UnicodeError) mp_obj_t mp_obj_new_str_via_qstr(const char *data, size_t len); // input data must be valid utf-8 mp_obj_t mp_obj_new_str_from_vstr(vstr_t *vstr); // will check utf-8 (raises UnicodeError) #if MICROPY_PY_BUILTINS_STR_UNICODE && MICROPY_PY_BUILTINS_STR_UNICODE_CHECK mp_obj_t mp_obj_new_str_from_utf8_vstr(vstr_t *vstr); // input data must be valid utf-8 #else #define mp_obj_new_str_from_utf8_vstr mp_obj_new_str_from_vstr #endif mp_obj_t mp_obj_new_bytes_from_vstr(vstr_t *vstr); mp_obj_t mp_obj_new_bytes(const byte *data, size_t len); mp_obj_t mp_obj_new_bytearray(size_t n, const void *items); mp_obj_t mp_obj_new_bytearray_by_ref(size_t n, void *items); #if MICROPY_PY_BUILTINS_FLOAT mp_obj_t mp_obj_new_int_from_float(mp_float_t val); mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag); #endif mp_obj_t mp_obj_new_exception(const mp_obj_type_t *exc_type); mp_obj_t mp_obj_new_exception_args(const mp_obj_type_t *exc_type, size_t n_args, const mp_obj_t *args); #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE #define mp_obj_new_exception_msg(exc_type, msg) mp_obj_new_exception(exc_type) #define mp_obj_new_exception_msg_varg(exc_type, ...) mp_obj_new_exception(exc_type) #else mp_obj_t mp_obj_new_exception_msg(const mp_obj_type_t *exc_type, mp_rom_error_text_t msg); mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, mp_rom_error_text_t fmt, ...); // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!) #endif #ifdef va_start mp_obj_t mp_obj_new_exception_msg_vlist(const mp_obj_type_t *exc_type, mp_rom_error_text_t fmt, va_list arg); // same fmt restrictions as above #endif mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun); mp_obj_t mp_obj_new_closure(mp_obj_t fun, size_t n_closed, const mp_obj_t *closed); mp_obj_t mp_obj_new_tuple(size_t n, const mp_obj_t *items); mp_obj_t mp_obj_new_list(size_t n, mp_obj_t *items); mp_obj_t mp_obj_new_dict(size_t n_args); mp_obj_t mp_obj_new_set(size_t n_args, mp_obj_t *items); mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step); mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self); mp_obj_t mp_obj_new_getitem_iter(mp_obj_t *args, mp_obj_iter_buf_t *iter_buf); mp_obj_t mp_obj_new_module(qstr module_name); mp_obj_t mp_obj_new_memoryview(byte typecode, size_t nitems, void *items); const mp_obj_type_t *mp_obj_get_type(mp_const_obj_t o_in); const char *mp_obj_get_type_str(mp_const_obj_t o_in); bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo); // arguments should be type objects mp_obj_t mp_obj_cast_to_native_base(mp_obj_t self_in, mp_const_obj_t native_type); void mp_obj_print_helper(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind); void mp_obj_print(mp_obj_t o, mp_print_kind_t kind); void mp_obj_print_exception(const mp_print_t *print, mp_obj_t exc); bool mp_obj_is_true(mp_obj_t arg); bool mp_obj_is_callable(mp_obj_t o_in); mp_obj_t mp_obj_equal_not_equal(mp_binary_op_t op, mp_obj_t o1, mp_obj_t o2); bool mp_obj_equal(mp_obj_t o1, mp_obj_t o2); // returns true if o is bool, small int or long int static inline bool mp_obj_is_integer(mp_const_obj_t o) { return mp_obj_is_int(o) || mp_obj_is_bool(o); } mp_int_t mp_obj_get_int(mp_const_obj_t arg); mp_int_t mp_obj_get_int_truncated(mp_const_obj_t arg); bool mp_obj_get_int_maybe(mp_const_obj_t arg, mp_int_t *value); #if MICROPY_PY_BUILTINS_FLOAT mp_float_t mp_obj_get_float(mp_obj_t self_in); bool mp_obj_get_float_maybe(mp_obj_t arg, mp_float_t *value); void mp_obj_get_complex(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag); bool mp_obj_get_complex_maybe(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag); #endif void mp_obj_get_array(mp_obj_t o, size_t *len, mp_obj_t **items); // *items may point inside a GC block void mp_obj_get_array_fixed_n(mp_obj_t o, size_t len, mp_obj_t **items); // *items may point inside a GC block size_t mp_get_index(const mp_obj_type_t *type, size_t len, mp_obj_t index, bool is_slice); mp_obj_t mp_obj_id(mp_obj_t o_in); mp_obj_t mp_obj_len(mp_obj_t o_in); mp_obj_t mp_obj_len_maybe(mp_obj_t o_in); // may return MP_OBJ_NULL mp_obj_t mp_obj_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t val); // cell typedef struct _mp_obj_cell_t { mp_obj_base_t base; mp_obj_t obj; } mp_obj_cell_t; static inline mp_obj_t mp_obj_cell_get(mp_obj_t self_in) { mp_obj_cell_t *self = (mp_obj_cell_t *)MP_OBJ_TO_PTR(self_in); return self->obj; } static inline void mp_obj_cell_set(mp_obj_t self_in, mp_obj_t obj) { mp_obj_cell_t *self = (mp_obj_cell_t *)MP_OBJ_TO_PTR(self_in); self->obj = obj; } // int // For long int, returns value truncated to mp_int_t mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in); // Will raise exception if value doesn't fit into mp_int_t mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in); // Will raise exception if value is negative or doesn't fit into mp_uint_t mp_uint_t mp_obj_int_get_uint_checked(mp_const_obj_t self_in); // exception bool mp_obj_is_native_exception_instance(mp_obj_t self_in); bool mp_obj_is_exception_type(mp_obj_t self_in); bool mp_obj_is_exception_instance(mp_obj_t self_in); bool mp_obj_exception_match(mp_obj_t exc, mp_const_obj_t exc_type); void mp_obj_exception_clear_traceback(mp_obj_t self_in); void mp_obj_exception_add_traceback(mp_obj_t self_in, qstr file, size_t line, qstr block); void mp_obj_exception_get_traceback(mp_obj_t self_in, size_t *n, size_t **values); mp_obj_t mp_obj_exception_get_value(mp_obj_t self_in); mp_obj_t mp_obj_exception_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args); mp_obj_t mp_alloc_emergency_exception_buf(mp_obj_t size_in); void mp_init_emergency_exception_buf(void); static inline mp_obj_t mp_obj_new_exception_arg1(const mp_obj_type_t *exc_type, mp_obj_t arg) { assert(MP_OBJ_TYPE_GET_SLOT_OR_NULL(exc_type, make_new) == mp_obj_exception_make_new); return mp_obj_exception_make_new(exc_type, 1, 0, &arg); } // str bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2); qstr mp_obj_str_get_qstr(mp_obj_t self_in); // use this if you will anyway convert the string to a qstr const char *mp_obj_str_get_str(mp_obj_t self_in); // use this only if you need the string to be null terminated const char *mp_obj_str_get_data(mp_obj_t self_in, size_t *len); mp_obj_t mp_obj_str_intern(mp_obj_t str); mp_obj_t mp_obj_str_intern_checked(mp_obj_t obj); void mp_str_print_quoted(const mp_print_t *print, const byte *str_data, size_t str_len, bool is_bytes); #if MICROPY_PY_BUILTINS_FLOAT // float #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT static inline float mp_obj_get_float_to_f(mp_obj_t o) { return mp_obj_get_float(o); } static inline double mp_obj_get_float_to_d(mp_obj_t o) { return (double)mp_obj_get_float(o); } static inline mp_obj_t mp_obj_new_float_from_f(float o) { return mp_obj_new_float(o); } static inline mp_obj_t mp_obj_new_float_from_d(double o) { return mp_obj_new_float((mp_float_t)o); } #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE static inline float mp_obj_get_float_to_f(mp_obj_t o) { return (float)mp_obj_get_float(o); } static inline double mp_obj_get_float_to_d(mp_obj_t o) { return mp_obj_get_float(o); } static inline mp_obj_t mp_obj_new_float_from_f(float o) { return mp_obj_new_float((mp_float_t)o); } static inline mp_obj_t mp_obj_new_float_from_d(double o) { return mp_obj_new_float(o); } #endif #if MICROPY_FLOAT_HIGH_QUALITY_HASH mp_int_t mp_float_hash(mp_float_t val); #else static inline mp_int_t mp_float_hash(mp_float_t val) { return (mp_int_t)val; } #endif mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs); // can return MP_OBJ_NULL if op not supported // complex void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag); mp_obj_t mp_obj_complex_binary_op(mp_binary_op_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in); // can return MP_OBJ_NULL if op not supported #else #define mp_obj_is_float(o) (false) #endif // tuple void mp_obj_tuple_get(mp_obj_t self_in, size_t *len, mp_obj_t **items); void mp_obj_tuple_del(mp_obj_t self_in); mp_int_t mp_obj_tuple_hash(mp_obj_t self_in); // list mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg); mp_obj_t mp_obj_list_remove(mp_obj_t self_in, mp_obj_t value); void mp_obj_list_get(mp_obj_t self_in, size_t *len, mp_obj_t **items); void mp_obj_list_set_len(mp_obj_t self_in, size_t len); void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value); mp_obj_t mp_obj_list_sort(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs); // dict typedef struct _mp_obj_dict_t { mp_obj_base_t base; mp_map_t map; } mp_obj_dict_t; mp_obj_t mp_obj_dict_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args); void mp_obj_dict_init(mp_obj_dict_t *dict, size_t n_args); size_t mp_obj_dict_len(mp_obj_t self_in); mp_obj_t mp_obj_dict_get(mp_obj_t self_in, mp_obj_t index); mp_obj_t mp_obj_dict_store(mp_obj_t self_in, mp_obj_t key, mp_obj_t value); mp_obj_t mp_obj_dict_delete(mp_obj_t self_in, mp_obj_t key); mp_obj_t mp_obj_dict_copy(mp_obj_t self_in); static inline mp_map_t *mp_obj_dict_get_map(mp_obj_t dict) { return &((mp_obj_dict_t *)MP_OBJ_TO_PTR(dict))->map; } // set void mp_obj_set_store(mp_obj_t self_in, mp_obj_t item); // slice indexes resolved to particular sequence typedef struct { mp_int_t start; mp_int_t stop; mp_int_t step; } mp_bound_slice_t; // slice typedef struct _mp_obj_slice_t { mp_obj_base_t base; mp_obj_t start; mp_obj_t stop; mp_obj_t step; } mp_obj_slice_t; void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result); // functions typedef struct _mp_obj_fun_builtin_fixed_t { mp_obj_base_t base; union { mp_fun_0_t _0; mp_fun_1_t _1; mp_fun_2_t _2; mp_fun_3_t _3; } fun; } mp_obj_fun_builtin_fixed_t; typedef struct _mp_obj_fun_builtin_var_t { mp_obj_base_t base; uint32_t sig; // see MP_OBJ_FUN_MAKE_SIG union { mp_fun_var_t var; mp_fun_kw_t kw; } fun; } mp_obj_fun_builtin_var_t; qstr mp_obj_fun_get_name(mp_const_obj_t fun); mp_obj_t mp_identity(mp_obj_t self); MP_DECLARE_CONST_FUN_OBJ_1(mp_identity_obj); // module typedef struct _mp_obj_module_t { mp_obj_base_t base; mp_obj_dict_t *globals; } mp_obj_module_t; static inline mp_obj_dict_t *mp_obj_module_get_globals(mp_obj_t module) { return ((mp_obj_module_t *)MP_OBJ_TO_PTR(module))->globals; } // staticmethod and classmethod types; defined here so we can make const versions // this structure is used for instances of both staticmethod and classmethod typedef struct _mp_obj_static_class_method_t { mp_obj_base_t base; mp_obj_t fun; } mp_obj_static_class_method_t; typedef struct _mp_rom_obj_static_class_method_t { mp_obj_base_t base; mp_rom_obj_t fun; } mp_rom_obj_static_class_method_t; // property const mp_obj_t *mp_obj_property_get(mp_obj_t self_in); // sequence helpers void mp_seq_multiply(const void *items, size_t item_sz, size_t len, size_t times, void *dest); #if MICROPY_PY_BUILTINS_SLICE bool mp_seq_get_fast_slice_indexes(mp_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes); #endif #define mp_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t)) #define mp_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); } bool mp_seq_cmp_bytes(mp_uint_t op, const byte *data1, size_t len1, const byte *data2, size_t len2); bool mp_seq_cmp_objs(mp_uint_t op, const mp_obj_t *items1, size_t len1, const mp_obj_t *items2, size_t len2); mp_obj_t mp_seq_index_obj(const mp_obj_t *items, size_t len, size_t n_args, const mp_obj_t *args); mp_obj_t mp_seq_count_obj(const mp_obj_t *items, size_t len, mp_obj_t value); mp_obj_t mp_seq_extract_slice(size_t len, const mp_obj_t *seq, mp_bound_slice_t *indexes); // Helper to clear stale pointers from allocated, but unused memory, to preclude GC problems #define mp_seq_clear(start, len, alloc_len, item_sz) memset((byte *)(start) + (len) * (item_sz), 0, ((alloc_len) - (len)) * (item_sz)) // Note: dest and slice regions may overlap #define mp_seq_replace_slice_no_grow(dest, dest_len, beg, end, slice, slice_len, item_sz) \ memmove(((char *)dest) + (beg) * (item_sz), slice, slice_len * (item_sz)); \ memmove(((char *)dest) + (beg + slice_len) * (item_sz), ((char *)dest) + (end) * (item_sz), (dest_len - end) * (item_sz)); // Note: dest and slice regions may overlap #define mp_seq_replace_slice_grow_inplace(dest, dest_len, beg, end, slice, slice_len, len_adj, item_sz) \ memmove(((char *)dest) + (beg + slice_len) * (item_sz), ((char *)dest) + (end) * (item_sz), ((dest_len) + (len_adj) - ((beg) + (slice_len))) * (item_sz)); \ memmove(((char *)dest) + (beg) * (item_sz), slice, slice_len * (item_sz)); // Provide translation for legacy API #define MP_OBJ_IS_SMALL_INT mp_obj_is_small_int #define MP_OBJ_IS_QSTR mp_obj_is_qstr #define MP_OBJ_IS_OBJ mp_obj_is_obj #define MP_OBJ_IS_INT mp_obj_is_int #define MP_OBJ_IS_TYPE mp_obj_is_type #define MP_OBJ_IS_STR mp_obj_is_str #define MP_OBJ_IS_STR_OR_BYTES mp_obj_is_str_or_bytes #define MP_OBJ_IS_FUN mp_obj_is_fun #define MP_MAP_SLOT_IS_FILLED mp_map_slot_is_filled #define MP_SET_SLOT_IS_FILLED mp_set_slot_is_filled #endif // MICROPY_INCLUDED_PY_OBJ_H