/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/mperrno.h" #include "py/mphal.h" #include "mpu.h" #include "qspi.h" #include "pin_static_af.h" #if defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2) #define QSPI_MAP_ADDR (0x90000000) #ifndef MICROPY_HW_QSPI_PRESCALER #define MICROPY_HW_QSPI_PRESCALER 3 // F_CLK = F_AHB/3 (72MHz when CPU is 216MHz) #endif #ifndef MICROPY_HW_QSPI_SAMPLE_SHIFT #define MICROPY_HW_QSPI_SAMPLE_SHIFT 1 // sample shift enabled #endif #ifndef MICROPY_HW_QSPI_TIMEOUT_COUNTER #define MICROPY_HW_QSPI_TIMEOUT_COUNTER 0 // timeout counter disabled (see F7 errata) #endif #ifndef MICROPY_HW_QSPI_CS_HIGH_CYCLES #define MICROPY_HW_QSPI_CS_HIGH_CYCLES 2 // nCS stays high for 2 cycles #endif #ifndef MICROPY_HW_QSPI_MPU_REGION_SIZE #define MICROPY_HW_QSPI_MPU_REGION_SIZE ((1 << (MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3)) >> 20) #endif #if (MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) >= 24 #define QSPI_CMD 0xec #define QSPI_ADSIZE 3 #else #define QSPI_CMD 0xeb #define QSPI_ADSIZE 2 #endif static inline void qspi_mpu_disable_all(void) { // Configure MPU to disable access to entire QSPI region, to prevent CPU // speculative execution from accessing this region and modifying QSPI registers. uint32_t irq_state = mpu_config_start(); mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x00, MPU_REGION_SIZE_256MB)); mpu_config_end(irq_state); } static inline void qspi_mpu_enable_mapped(void) { // Configure MPU to allow access to only the valid part of external SPI flash. // The memory accesses to the mapped QSPI are faster if the MPU is not used // for the memory-mapped region, so 3 MPU regions are used to disable access // to everything except the valid address space, using holes in the bottom // of the regions and nesting them. // Note: Disabling a subregion (by setting its corresponding SRD bit to 1) // means another region overlapping the disabled range matches instead. If no // other enabled region overlaps the disabled subregion, and the access is // unprivileged or the background region is disabled, the MPU issues a fault. uint32_t irq_state = mpu_config_start(); #if MICROPY_HW_QSPI_MPU_REGION_SIZE > 128 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0xFF, MPU_REGION_SIZE_256MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 64 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_256MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 32 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_256MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 16 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 8 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_32MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 4 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_32MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 2 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_32MB)); #elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 1 mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_32MB)); mpu_config_region(MPU_REGION_QSPI3, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_16MB)); #else mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB)); mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_32MB)); mpu_config_region(MPU_REGION_QSPI3, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_4MB)); #endif mpu_config_end(irq_state); } void qspi_init(void) { qspi_mpu_disable_all(); // Configure pins mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_CS, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_NCS); mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_SCK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_CLK); mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO0); mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO1); mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO2); mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO3); // Bring up the QSPI peripheral __HAL_RCC_QSPI_CLK_ENABLE(); __HAL_RCC_QSPI_FORCE_RESET(); __HAL_RCC_QSPI_RELEASE_RESET(); QUADSPI->CR = (MICROPY_HW_QSPI_PRESCALER - 1) << QUADSPI_CR_PRESCALER_Pos | 3 << QUADSPI_CR_FTHRES_Pos // 4 bytes must be available to read/write #if defined(QUADSPI_CR_FSEL_Pos) | 0 << QUADSPI_CR_FSEL_Pos // FLASH 1 selected #endif #if defined(QUADSPI_CR_DFM_Pos) | 0 << QUADSPI_CR_DFM_Pos // dual-flash mode disabled #endif | MICROPY_HW_QSPI_SAMPLE_SHIFT << QUADSPI_CR_SSHIFT_Pos | MICROPY_HW_QSPI_TIMEOUT_COUNTER << QUADSPI_CR_TCEN_Pos | 1 << QUADSPI_CR_EN_Pos // enable the peripheral ; QUADSPI->DCR = (MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) << QUADSPI_DCR_FSIZE_Pos | (MICROPY_HW_QSPI_CS_HIGH_CYCLES - 1) << QUADSPI_DCR_CSHT_Pos | 0 << QUADSPI_DCR_CKMODE_Pos // CLK idles at low state ; } void qspi_memory_map(void) { // Enable memory-mapped mode QUADSPI->ABR = 0; // disable continuous read mode QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 3 << QUADSPI_CCR_FMODE_Pos // memory-mapped mode | 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines | 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles | 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte | 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines | QSPI_ADSIZE << QUADSPI_CCR_ADSIZE_Pos | 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | QSPI_CMD << QUADSPI_CCR_INSTRUCTION_Pos ; qspi_mpu_enable_mapped(); } STATIC int qspi_ioctl(void *self_in, uint32_t cmd) { (void)self_in; switch (cmd) { case MP_QSPI_IOCTL_INIT: qspi_init(); break; case MP_QSPI_IOCTL_BUS_ACQUIRE: // Disable memory-mapped region during bus access qspi_mpu_disable_all(); // Abort any ongoing transfer if peripheral is busy if (QUADSPI->SR & QUADSPI_SR_BUSY) { QUADSPI->CR |= QUADSPI_CR_ABORT; while (QUADSPI->CR & QUADSPI_CR_ABORT) { } } break; case MP_QSPI_IOCTL_BUS_RELEASE: // Switch to memory-map mode when bus is idle qspi_memory_map(); break; } return 0; // success } STATIC void qspi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) { (void)self_in; QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag if (len == 0) { QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode | 0 << QUADSPI_CCR_DMODE_Pos // no data | 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles | 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte | 0 << QUADSPI_CCR_ADMODE_Pos // no address | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode ; } else { QUADSPI->DLR = len - 1; QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode | 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line | 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles | 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte | 0 << QUADSPI_CCR_ADMODE_Pos // no address | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode ; // This assumes len==2 *(uint16_t *)&QUADSPI->DR = data; } // Wait for write to finish while (!(QUADSPI->SR & QUADSPI_SR_TCF)) { } QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag } STATIC void qspi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) { (void)self_in; uint8_t adsize = MP_SPI_ADDR_IS_32B(addr) ? 3 : 2; QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag if (len == 0) { QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode | 0 << QUADSPI_CCR_DMODE_Pos // no data | 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles | 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte | adsize << QUADSPI_CCR_ADSIZE_Pos // 32/24-bit address size | 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode ; QUADSPI->AR = addr; } else { QUADSPI->DLR = len - 1; QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode | 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line | 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles | 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte | adsize << QUADSPI_CCR_ADSIZE_Pos // 32/24-bit address size | 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode ; QUADSPI->AR = addr; // Write out the data 1 byte at a time while (len) { while (!(QUADSPI->SR & QUADSPI_SR_FTF)) { } *(volatile uint8_t *)&QUADSPI->DR = *src++; --len; } } // Wait for write to finish while (!(QUADSPI->SR & QUADSPI_SR_TCF)) { } QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag } STATIC uint32_t qspi_read_cmd(void *self_in, uint8_t cmd, size_t len) { (void)self_in; QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag QUADSPI->DLR = len - 1; // number of bytes to read QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode | 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line | 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles | 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte | 0 << QUADSPI_CCR_ADMODE_Pos // no address | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // read opcode ; // Wait for read to finish while (!(QUADSPI->SR & QUADSPI_SR_TCF)) { } QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag // Read result return QUADSPI->DR; } STATIC void qspi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) { (void)self_in; uint8_t adsize = MP_SPI_ADDR_IS_32B(addr) ? 3 : 2; QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag QUADSPI->DLR = len - 1; // number of bytes to read QUADSPI->CCR = 0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled | 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction | 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode | 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines | 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles | 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte | 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines | adsize << QUADSPI_CCR_ADSIZE_Pos // 32 or 24-bit address size | 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines | 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line | cmd << QUADSPI_CCR_INSTRUCTION_Pos // quad read opcode ; QUADSPI->ABR = 0; // alternate byte: disable continuous read mode QUADSPI->AR = addr; // address to read from // Read in the data 4 bytes at a time if dest is aligned if (((uintptr_t)dest & 3) == 0) { while (len >= 4) { while (!(QUADSPI->SR & QUADSPI_SR_FTF)) { } *(uint32_t *)dest = QUADSPI->DR; dest += 4; len -= 4; } } // Read in remaining data 1 byte at a time while (len) { while (!((QUADSPI->SR >> QUADSPI_SR_FLEVEL_Pos) & 0x3f)) { } *dest++ = *(volatile uint8_t *)&QUADSPI->DR; --len; } QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag } const mp_qspi_proto_t qspi_proto = { .ioctl = qspi_ioctl, .write_cmd_data = qspi_write_cmd_data, .write_cmd_addr_data = qspi_write_cmd_addr_data, .read_cmd = qspi_read_cmd, .read_cmd_qaddr_qdata = qspi_read_cmd_qaddr_qdata, }; #endif // defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2)