You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

802 lines
48 KiB

//*****************************************************************************
//
// Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#ifndef __HW_AES_H__
#define __HW_AES_H__
//*****************************************************************************
//
// The following are defines for the AES_P register offsets.
//
//*****************************************************************************
#define AES_O_KEY2_6 0x00000000 // XTS second key / CBC-MAC third
// key
#define AES_O_KEY2_7 0x00000004 // XTS second key (MSW for 256-bit
// key) / CBC-MAC third key (MSW)
#define AES_O_KEY2_4 0x00000008 // XTS / CCM second key / CBC-MAC
// third key (LSW)
#define AES_O_KEY2_5 0x0000000C // XTS second key (MSW for 192-bit
// key) / CBC-MAC third key
#define AES_O_KEY2_2 0x00000010 // XTS / CCM / CBC-MAC second key /
// Hash Key input
#define AES_O_KEY2_3 0x00000014 // XTS second key (MSW for 128-bit
// key) + CCM/CBC-MAC second key
// (MSW) / Hash Key input (MSW)
#define AES_O_KEY2_0 0x00000018 // XTS / CCM / CBC-MAC second key
// (LSW) / Hash Key input (LSW)
#define AES_O_KEY2_1 0x0000001C // XTS / CCM / CBC-MAC second key /
// Hash Key input
#define AES_O_KEY1_6 0x00000020 // Key (LSW for 256-bit key)
#define AES_O_KEY1_7 0x00000024 // Key (MSW for 256-bit key)
#define AES_O_KEY1_4 0x00000028 // Key (LSW for 192-bit key)
#define AES_O_KEY1_5 0x0000002C // Key (MSW for 192-bit key)
#define AES_O_KEY1_2 0x00000030 // Key
#define AES_O_KEY1_3 0x00000034 // Key (MSW for 128-bit key)
#define AES_O_KEY1_0 0x00000038 // Key (LSW for 128-bit key)
#define AES_O_KEY1_1 0x0000003C // Key
#define AES_O_IV_IN_0 0x00000040 // Initialization Vector input
// (LSW)
#define AES_O_IV_IN_1 0x00000044 // Initialization vector input
#define AES_O_IV_IN_2 0x00000048 // Initialization vector input
#define AES_O_IV_IN_3 0x0000004C // Initialization Vector input
// (MSW)
#define AES_O_CTRL 0x00000050 // register determines the mode of
// operation of the AES Engine
#define AES_O_C_LENGTH_0 0x00000054 // Crypto data length registers
// (LSW and MSW) store the
// cryptographic data length in
// bytes for all modes. Once
// processing with this context is
// started@@ this length decrements
// to zero. Data lengths up to (2^61
// – 1) bytes are allowed. For GCM@@
// any value up to 2^36 - 32 bytes
// can be used. This is because a
// 32-bit counter mode is used; the
// maximum number of 128-bit blocks
// is 2^32 – 2@@ resulting in a
// maximum number of bytes of 2^36 -
// 32. A write to this register
// triggers the engine to start
// using this context. This is valid
// for all modes except GCM and CCM.
// Note that for the combined
// modes@@ this length does not
// include the authentication only
// data; the authentication length
// is specified in the
// AES_AUTH_LENGTH register below.
// All modes must have a length > 0.
// For the combined modes@@ it is
// allowed to have one of the
// lengths equal to zero. For the
// basic encryption modes
// (ECB/CBC/CTR/ICM/CFB128) it is
// allowed to program zero to the
// length field; in that case the
// length is assumed infinite. All
// data must be byte (8-bit)
// aligned; bit aligned data streams
// are not supported by the AES
// Engine. For a Host read
// operation@@ these registers
// return all-zeroes.
#define AES_O_C_LENGTH_1 0x00000058 // Crypto data length registers
// (LSW and MSW) store the
// cryptographic data length in
// bytes for all modes. Once
// processing with this context is
// started@@ this length decrements
// to zero. Data lengths up to (2^61
// – 1) bytes are allowed. For GCM@@
// any value up to 2^36 - 32 bytes
// can be used. This is because a
// 32-bit counter mode is used; the
// maximum number of 128-bit blocks
// is 2^32 – 2@@ resulting in a
// maximum number of bytes of 2^36 -
// 32. A write to this register
// triggers the engine to start
// using this context. This is valid
// for all modes except GCM and CCM.
// Note that for the combined
// modes@@ this length does not
// include the authentication only
// data; the authentication length
// is specified in the
// AES_AUTH_LENGTH register below.
// All modes must have a length > 0.
// For the combined modes@@ it is
// allowed to have one of the
// lengths equal to zero. For the
// basic encryption modes
// (ECB/CBC/CTR/ICM/CFB128) it is
// allowed to program zero to the
// length field; in that case the
// length is assumed infinite. All
// data must be byte (8-bit)
// aligned; bit aligned data streams
// are not supported by the AES
// Engine. For a Host read
// operation@@ these registers
// return all-zeroes.
#define AES_O_AUTH_LENGTH 0x0000005C // AAD data length. The
// authentication length register
// store the authentication data
// length in bytes for combined
// modes only (GCM or CCM) Supported
// AAD-lengths for CCM are from 0 to
// (2^16 - 2^8) bytes. For GCM any
// value up to (2^32 - 1) bytes can
// be used. Once processing with
// this context is started@@ this
// length decrements to zero. A
// write to this register triggers
// the engine to start using this
// context for GCM and CCM. For XTS
// this register is optionally used
// to load ‘j’. Loading of ‘j’ is
// only required if ‘j’ != 0. ‘j’ is
// a 28-bit value and must be
// written to bits [31-4] of this
// register. ‘j’ represents the
// sequential number of the 128-bit
// block inside the data unit. For
// the first block in a unit@@ this
// value is zero. It is not required
// to provide a ‘j’ for each new
// data block within a unit. Note
// that it is possible to start with
// a ‘j’ unequal to zero; refer to
// Table 4 for more details. For a
// Host read operation@@ these
// registers return all-zeroes.
#define AES_O_DATA_IN_0 0x00000060 // Data register to read and write
// plaintext/ciphertext (MSW)
#define AES_O_DATA_IN_1 0x00000064 // Data register to read and write
// plaintext/ciphertext
#define AES_O_DATA_IN_2 0x00000068 // Data register to read and write
// plaintext/ciphertext
#define AES_O_DATA_IN_3 0x0000006C // Data register to read and write
// plaintext/ciphertext (LSW)
#define AES_O_TAG_OUT_0 0x00000070
#define AES_O_TAG_OUT_1 0x00000074
#define AES_O_TAG_OUT_2 0x00000078
#define AES_O_TAG_OUT_3 0x0000007C
#define AES_O_REVISION 0x00000080 // Register AES_REVISION
#define AES_O_SYSCONFIG 0x00000084 // Register AES_SYSCONFIG.This
// register configures the DMA
// signals and controls the IDLE and
// reset logic
#define AES_O_SYSSTATUS 0x00000088
#define AES_O_IRQSTATUS 0x0000008C // This register indicates the
// interrupt status. If one of the
// interrupt bits is set the
// interrupt output will be asserted
#define AES_O_IRQENABLE 0x00000090 // This register contains an enable
// bit for each unique interrupt
// generated by the module. It
// matches the layout of
// AES_IRQSTATUS register. An
// interrupt is enabled when the bit
// in this register is set to ‘1’.
// An interrupt that is enabled is
// propagated to the SINTREQUEST_x
// output. All interrupts need to be
// enabled explicitly by writing
// this register.
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_6 register.
//
//******************************************************************************
#define AES_KEY2_6_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_6_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_7 register.
//
//******************************************************************************
#define AES_KEY2_7_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_7_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_4 register.
//
//******************************************************************************
#define AES_KEY2_4_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_4_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_5 register.
//
//******************************************************************************
#define AES_KEY2_5_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_5_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_2 register.
//
//******************************************************************************
#define AES_KEY2_2_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_2_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_3 register.
//
//******************************************************************************
#define AES_KEY2_3_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_3_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_0 register.
//
//******************************************************************************
#define AES_KEY2_0_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_0_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY2_1 register.
//
//******************************************************************************
#define AES_KEY2_1_KEY_M 0xFFFFFFFF // key data
#define AES_KEY2_1_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_6 register.
//
//******************************************************************************
#define AES_KEY1_6_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_6_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_7 register.
//
//******************************************************************************
#define AES_KEY1_7_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_7_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_4 register.
//
//******************************************************************************
#define AES_KEY1_4_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_4_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_5 register.
//
//******************************************************************************
#define AES_KEY1_5_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_5_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_2 register.
//
//******************************************************************************
#define AES_KEY1_2_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_2_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_3 register.
//
//******************************************************************************
#define AES_KEY1_3_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_3_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_0 register.
//
//******************************************************************************
#define AES_KEY1_0_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_0_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_KEY1_1 register.
//
//******************************************************************************
#define AES_KEY1_1_KEY_M 0xFFFFFFFF // key data
#define AES_KEY1_1_KEY_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IV_IN_0 register.
//
//******************************************************************************
#define AES_IV_IN_0_DATA_M 0xFFFFFFFF // IV data
#define AES_IV_IN_0_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IV_IN_1 register.
//
//******************************************************************************
#define AES_IV_IN_1_DATA_M 0xFFFFFFFF // IV data
#define AES_IV_IN_1_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IV_IN_2 register.
//
//******************************************************************************
#define AES_IV_IN_2_DATA_M 0xFFFFFFFF // IV data
#define AES_IV_IN_2_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IV_IN_3 register.
//
//******************************************************************************
#define AES_IV_IN_3_DATA_M 0xFFFFFFFF // IV data
#define AES_IV_IN_3_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_CTRL register.
//
//******************************************************************************
#define AES_CTRL_CONTEXT_READY \
0x80000000 // If ‘1’@@ this read-only status
// bit indicates that the context
// data registers can be overwritten
// and the host is permitted to
// write the next context.
#define AES_CTRL_SVCTXTRDY \
0x40000000 // If ‘1’@@ this read-only status
// bit indicates that an AES
// authentication TAG and/or IV
// block(s) is/are available for the
// host to retrieve. This bit is
// only asserted if the
// ‘save_context’ bit is set to ‘1’.
// The bit is mutual exclusive with
// the ‘context_ready’ bit.
#define AES_CTRL_SAVE_CONTEXT 0x20000000 // This bit is used to indicate
// that an authentication TAG or
// result IV needs to be stored as a
// result context. If this bit is
// set@@ context output DMA and/or
// interrupt will be asserted if the
// operation is finished and related
// signals are enabled.
#define AES_CTRL_CCM_M 0x01C00000 // Defines “M” that indicated the
// length of the authentication
// field for CCM operations; the
// authentication field length
// equals two times (the value of
// CCM-M plus one). Note that the
// AES Engine always returns a
// 128-bit authentication field@@ of
// which the M least significant
// bytes are valid. All values are
// supported.
#define AES_CTRL_CCM_S 22
#define AES_CTRL_CCM_L_M 0x00380000 // Defines “L” that indicated the
// width of the length field for CCM
// operations; the length field in
// bytes equals the value of CMM-L
// plus one. Supported values for L
// are (programmed value): 2 (1)@@ 4
// (3) and 8 (7).
#define AES_CTRL_CCM_L_S 19
#define AES_CTRL_CCM 0x00040000 // AES-CCM is selected@@ this is a
// combined mode@@ using AES for
// both authentication and
// encryption. No additional mode
// selection is required. 0 Other
// mode selected 1 ccm mode selected
#define AES_CTRL_GCM_M 0x00030000 // AES-GCM mode is selected.this is
// a combined mode@@ using the
// Galois field multiplier GF(2^128)
// for authentication and AES-CTR
// mode for encryption@@ the bits
// specify the GCM mode. 0x0 No
// operation 0x1 GHASH with H loaded
// and Y0-encrypted forced to zero
// 0x2 GHASH with H loaded and
// Y0-encrypted calculated
// internally 0x3 Autonomous GHASH
// (both H and Y0-encrypted
// calculated internally)
#define AES_CTRL_GCM_S 16
#define AES_CTRL_CBCMAC 0x00008000 // AES-CBC MAC is selected@@ the
// Direction bit must be set to ‘1’
// for this mode. 0 Other mode
// selected 1 cbcmac mode selected
#define AES_CTRL_F9 0x00004000 // AES f9 mode is selected@@ the
// AES key size must be set to
// 128-bit for this mode. 0 Other
// mode selected 1 f9 selected
#define AES_CTRL_F8 0x00002000 // AES f8 mode is selected@@ the
// AES key size must be set to
// 128-bit for this mode. 0 Other
// mode selected 1 f8 selected
#define AES_CTRL_XTS_M 0x00001800 // AES-XTS operation is selected;
// the bits specify the XTS mode.01
// = Previous/intermediate tweak
// value and ‘j’ loaded (value is
// loaded via IV@@ j is loaded via
// the AAD length register) 0x0 No
// operation 0x1
// Previous/intermediate tweak value
// and ‘j’ loaded (value is loaded
// via IV@@ j is loaded via the AAD
// length register) 0x2 Key2@@ i and
// j loaded (i is loaded via IV@@ j
// is loaded via the AAD length
// register) 0x3 Key2 and i loaded@@
// j=0 (i is loaded via IV)
#define AES_CTRL_XTS_S 11
#define AES_CTRL_CFB 0x00000400 // full block AES cipher feedback
// mode (CFB128) is selected. 0
// other mode selected 1 cfb
// selected
#define AES_CTRL_ICM 0x00000200 // AES integer counter mode (ICM)
// is selected@@ this is a counter
// mode with a 16-bit wide counter.
// 0 Other mode selected. 1 ICM mode
// selected
#define AES_CTRL_CTR_WIDTH_M 0x00000180 // Specifies the counter width for
// AES-CTR mode 0x0 Counter is 32
// bits 0x1 Counter is 64 bits 0x2
// Counter is 128 bits 0x3 Counter
// is 192 bits
#define AES_CTRL_CTR_WIDTH_S 7
#define AES_CTRL_CTR 0x00000040 // Tthis bit must also be set for
// GCM and CCM@@ when
// encryption/decryption is
// required. 0 Other mode selected 1
// Counter mode
#define AES_CTRL_MODE 0x00000020 // ecb/cbc mode 0 ecb mode 1 cbc
// mode
#define AES_CTRL_KEY_SIZE_M 0x00000018 // key size 0x0 reserved 0x1 Key is
// 128 bits. 0x2 Key is 192 bits 0x3
// Key is 256
#define AES_CTRL_KEY_SIZE_S 3
#define AES_CTRL_DIRECTION 0x00000004 // If set to ‘1’ an encrypt
// operation is performed. If set to
// ‘0’ a decrypt operation is
// performed. Read 0 decryption is
// selected Read 1 Encryption is
// selected
#define AES_CTRL_INPUT_READY 0x00000002 // If ‘1’@@ this read-only status
// bit indicates that the 16-byte
// input buffer is empty@@ and the
// host is permitted to write the
// next block of data.
#define AES_CTRL_OUTPUT_READY 0x00000001 // If ‘1’@@ this read-only status
// bit indicates that an AES output
// block is available for the host
// to retrieve.
//******************************************************************************
//
// The following are defines for the bit fields in the
// AES_O_C_LENGTH_0 register.
//
//******************************************************************************
//******************************************************************************
//
// The following are defines for the bit fields in the
// AES_O_C_LENGTH_1 register.
//
//******************************************************************************
#define AES_C_LENGTH_1_LENGTH_M \
0x1FFFFFFF // Data length (MSW) length
// registers (LSW and MSW) store the
// cryptographic data length in
// bytes for all modes. Once
// processing with this context is
// started@@ this length decrements
// to zero. Data lengths up to (2^61
// – 1) bytes are allowed. For GCM@@
// any value up to 2^36 - 32 bytes
// can be used. This is because a
// 32-bit counter mode is used; the
// maximum number of 128-bit blocks
// is 2^32 – 2@@ resulting in a
// maximum number of bytes of 2^36 -
// 32. A write to this register
// triggers the engine to start
// using this context. This is valid
// for all modes except GCM and CCM.
// Note that for the combined
// modes@@ this length does not
// include the authentication only
// data; the authentication length
// is specified in the
// AES_AUTH_LENGTH register below.
// All modes must have a length > 0.
// For the combined modes@@ it is
// allowed to have one of the
// lengths equal to zero. For the
// basic encryption modes
// (ECB/CBC/CTR/ICM/CFB128) it is
// allowed to program zero to the
// length field; in that case the
// length is assumed infinite. All
// data must be byte (8-bit)
// aligned; bit aligned data streams
// are not supported by the AES
// Engine. For a Host read
// operation@@ these registers
// return all-zeroes.
#define AES_C_LENGTH_1_LENGTH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the
// AES_O_AUTH_LENGTH register.
//
//******************************************************************************
#define AES_AUTH_LENGTH_AUTH_M \
0xFFFFFFFF // data
#define AES_AUTH_LENGTH_AUTH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_DATA_IN_0 register.
//
//******************************************************************************
#define AES_DATA_IN_0_DATA_M 0xFFFFFFFF // Data to encrypt/decrypt
#define AES_DATA_IN_0_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_DATA_IN_1 register.
//
//******************************************************************************
#define AES_DATA_IN_1_DATA_M 0xFFFFFFFF // Data to encrypt/decrypt
#define AES_DATA_IN_1_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_DATA_IN_2 register.
//
//******************************************************************************
#define AES_DATA_IN_2_DATA_M 0xFFFFFFFF // Data to encrypt/decrypt
#define AES_DATA_IN_2_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_DATA_IN_3 register.
//
//******************************************************************************
#define AES_DATA_IN_3_DATA_M 0xFFFFFFFF // Data to encrypt/decrypt
#define AES_DATA_IN_3_DATA_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_TAG_OUT_0 register.
//
//******************************************************************************
#define AES_TAG_OUT_0_HASH_M 0xFFFFFFFF // Hash result (MSW)
#define AES_TAG_OUT_0_HASH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_TAG_OUT_1 register.
//
//******************************************************************************
#define AES_TAG_OUT_1_HASH_M 0xFFFFFFFF // Hash result (MSW)
#define AES_TAG_OUT_1_HASH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_TAG_OUT_2 register.
//
//******************************************************************************
#define AES_TAG_OUT_2_HASH_M 0xFFFFFFFF // Hash result (MSW)
#define AES_TAG_OUT_2_HASH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_TAG_OUT_3 register.
//
//******************************************************************************
#define AES_TAG_OUT_3_HASH_M 0xFFFFFFFF // Hash result (LSW)
#define AES_TAG_OUT_3_HASH_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_REVISION register.
//
//******************************************************************************
#define AES_REVISION_SCHEME_M 0xC0000000
#define AES_REVISION_SCHEME_S 30
#define AES_REVISION_FUNC_M 0x0FFF0000 // Function indicates a software
// compatible module family. If
// there is no level of software
// compatibility a new Func number
// (and hence REVISION) should be
// assigned.
#define AES_REVISION_FUNC_S 16
#define AES_REVISION_R_RTL_M 0x0000F800 // RTL Version (R)@@ maintained by
// IP design owner. RTL follows a
// numbering such as X.Y.R.Z which
// are explained in this table. R
// changes ONLY when: (1) PDS
// uploads occur which may have been
// due to spec changes (2) Bug fixes
// occur (3) Resets to '0' when X or
// Y changes. Design team has an
// internal 'Z' (customer invisible)
// number which increments on every
// drop that happens due to DV and
// RTL updates. Z resets to 0 when R
// increments.
#define AES_REVISION_R_RTL_S 11
#define AES_REVISION_X_MAJOR_M \
0x00000700 // Major Revision (X)@@ maintained
// by IP specification owner. X
// changes ONLY when: (1) There is a
// major feature addition. An
// example would be adding Master
// Mode to Utopia Level2. The Func
// field (or Class/Type in old PID
// format) will remain the same. X
// does NOT change due to: (1) Bug
// fixes (2) Change in feature
// parameters.
#define AES_REVISION_X_MAJOR_S 8
#define AES_REVISION_CUSTOM_M 0x000000C0
#define AES_REVISION_CUSTOM_S 6
#define AES_REVISION_Y_MINOR_M \
0x0000003F // Minor Revision (Y)@@ maintained
// by IP specification owner. Y
// changes ONLY when: (1) Features
// are scaled (up or down).
// Flexibility exists in that this
// feature scalability may either be
// represented in the Y change or a
// specific register in the IP that
// indicates which features are
// exactly available. (2) When
// feature creeps from Is-Not list
// to Is list. But this may not be
// the case once it sees silicon; in
// which case X will change. Y does
// NOT change due to: (1) Bug fixes
// (2) Typos or clarifications (3)
// major functional/feature
// change/addition/deletion. Instead
// these changes may be reflected
// via R@@ S@@ X as applicable. Spec
// owner maintains a
// customer-invisible number 'S'
// which changes due to: (1)
// Typos/clarifications (2) Bug
// documentation. Note that this bug
// is not due to a spec change but
// due to implementation.
// Nevertheless@@ the spec tracks
// the IP bugs. An RTL release (say
// for silicon PG1.1) that occurs
// due to bug fix should document
// the corresponding spec number
// (X.Y.S) in its release notes.
#define AES_REVISION_Y_MINOR_S 0
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_SYSCONFIG register.
//
//******************************************************************************
#define AES_SYSCONFIG_MACONTEXT_OUT_ON_DATA_OUT \
0x00000200 // If set to '1' the two context
// out requests
// (dma_req_context_out_en@@ Bit [8]
// above@@ and context_out interrupt
// enable@@ Bit [3] of AES_IRQENABLE
// register) are mapped on the
// corresponding data output request
// bit. In this case@@ the original
// ‘context out’ bit values are
// ignored.
#define AES_SYSCONFIG_DMA_REQ_CONTEXT_OUT_EN \
0x00000100 // If set to ‘1’@@ the DMA context
// output request is enabled (for
// context data out@@ e.g. TAG for
// authentication modes). 0 Dma
// disabled 1 Dma enabled
#define AES_SYSCONFIG_DMA_REQ_CONTEXT_IN_EN \
0x00000080 // If set to ‘1’@@ the DMA context
// request is enabled. 0 Dma
// disabled 1 Dma enabled
#define AES_SYSCONFIG_DMA_REQ_DATA_OUT_EN \
0x00000040 // If set to ‘1’@@ the DMA output
// request is enabled. 0 Dma
// disabled 1 Dma enabled
#define AES_SYSCONFIG_DMA_REQ_DATA_IN_EN \
0x00000020 // If set to ‘1’@@ the DMA input
// request is enabled. 0 Dma
// disabled 1 Dma enabled
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_SYSSTATUS register.
//
//******************************************************************************
#define AES_SYSSTATUS_RESETDONE \
0x00000001
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IRQSTATUS register.
//
//******************************************************************************
#define AES_IRQSTATUS_CONTEXT_OUT \
0x00000008 // This bit indicates
// authentication tag (and IV)
// interrupt(s) is/are active and
// triggers the interrupt output.
#define AES_IRQSTATUS_DATA_OUT \
0x00000004 // This bit indicates data output
// interrupt is active and triggers
// the interrupt output.
#define AES_IRQSTATUS_DATA_IN 0x00000002 // This bit indicates data input
// interrupt is active and triggers
// the interrupt output.
#define AES_IRQSTATUS_CONTEX_IN \
0x00000001 // This bit indicates context
// interrupt is active and triggers
// the interrupt output.
//******************************************************************************
//
// The following are defines for the bit fields in the AES_O_IRQENABLE register.
//
//******************************************************************************
#define AES_IRQENABLE_CONTEXT_OUT \
0x00000008 // This bit indicates
// authentication tag (and IV)
// interrupt(s) is/are active and
// triggers the interrupt output.
#define AES_IRQENABLE_DATA_OUT \
0x00000004 // This bit indicates data output
// interrupt is active and triggers
// the interrupt output.
#define AES_IRQENABLE_DATA_IN 0x00000002 // This bit indicates data input
// interrupt is active and triggers
// the interrupt output.
#define AES_IRQENABLE_CONTEX_IN \
0x00000001 // This bit indicates context
// interrupt is active and triggers
// the interrupt output.
#endif // __HW_AES_H__