You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

484 lines
17 KiB

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "shared/timeutils/timeutils.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "rom_map.h"
#include "prcm.h"
#include "pybrtc.h"
#include "mpirq.h"
#include "pybsleep.h"
#include "simplelink.h"
#include "modnetwork.h"
#include "modwlan.h"
/// \moduleref pyb
/// \class RTC - real time clock
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
STATIC const mp_irq_methods_t pyb_rtc_irq_methods;
STATIC pyb_rtc_obj_t pyb_rtc_obj;
/******************************************************************************
FUNCTION-LIKE MACROS
******************************************************************************/
#define RTC_U16MS_CYCLES(msec) ((msec * 1024) / 1000)
#define RTC_CYCLES_U16MS(cycles) ((cycles * 1000) / 1024)
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs);
STATIC uint32_t pyb_rtc_reset (void);
STATIC void pyb_rtc_disable_interupt (void);
STATIC void pyb_rtc_irq_enable (mp_obj_t self_in);
STATIC void pyb_rtc_irq_disable (mp_obj_t self_in);
STATIC int pyb_rtc_irq_flags (mp_obj_t self_in);
STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds);
STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self, const mp_obj_t datetime);
STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds);
STATIC void rtc_msec_add(uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2);
/******************************************************************************
DECLARE PUBLIC FUNCTIONS
******************************************************************************/
__attribute__ ((section (".boot")))
void pyb_rtc_pre_init(void) {
// only if comming out of a power-on reset
if (MAP_PRCMSysResetCauseGet() == PRCM_POWER_ON) {
// Mark the RTC in use first
MAP_PRCMRTCInUseSet();
// reset the time and date
pyb_rtc_reset();
}
}
void pyb_rtc_get_time (uint32_t *secs, uint16_t *msecs) {
uint16_t cycles;
MAP_PRCMRTCGet (secs, &cycles);
*msecs = RTC_CYCLES_U16MS(cycles);
}
uint32_t pyb_rtc_get_seconds (void) {
uint32_t seconds;
uint16_t mseconds;
pyb_rtc_get_time(&seconds, &mseconds);
return seconds;
}
void pyb_rtc_calc_future_time (uint32_t a_mseconds, uint32_t *f_seconds, uint16_t *f_mseconds) {
uint32_t c_seconds;
uint16_t c_mseconds;
// get the current time
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// calculate the future seconds
*f_seconds = c_seconds + (a_mseconds / 1000);
// calculate the "remaining" future mseconds
*f_mseconds = a_mseconds % 1000;
// add the current milliseconds
rtc_msec_add (c_mseconds, f_seconds, f_mseconds);
}
void pyb_rtc_repeat_alarm (pyb_rtc_obj_t *self) {
if (self->repeat) {
uint32_t f_seconds, c_seconds;
uint16_t f_mseconds, c_mseconds;
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// substract the time elapsed between waking up and setting up the alarm again
int32_t wake_ms = ((c_seconds * 1000) + c_mseconds) - ((self->alarm_time_s * 1000) + self->alarm_time_ms);
int32_t next_alarm = self->alarm_ms - wake_ms;
next_alarm = next_alarm > 0 ? next_alarm : PYB_RTC_MIN_ALARM_TIME_MS;
pyb_rtc_calc_future_time (next_alarm, &f_seconds, &f_mseconds);
// now configure the alarm
pyb_rtc_set_alarm (self, f_seconds, f_mseconds);
}
}
void pyb_rtc_disable_alarm (void) {
pyb_rtc_obj.alarmset = false;
pyb_rtc_disable_interupt();
}
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs) {
// add the RTC access time
rtc_msec_add(RTC_ACCESS_TIME_MSEC, &secs, &msecs);
// convert from mseconds to cycles
msecs = RTC_U16MS_CYCLES(msecs);
// now set the time
MAP_PRCMRTCSet(secs, msecs);
}
STATIC uint32_t pyb_rtc_reset (void) {
// fresh reset; configure the RTC Calendar
// set the date to 1st Jan 2015
// set the time to 00:00:00
uint32_t seconds = timeutils_seconds_since_2000(2015, 1, 1, 0, 0, 0);
// disable any running alarm
pyb_rtc_disable_alarm();
// Now set the RTC calendar time
pyb_rtc_set_time(seconds, 0);
return seconds;
}
STATIC void pyb_rtc_disable_interupt (void) {
uint primsk = disable_irq();
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
(void)MAP_PRCMIntStatus();
enable_irq(primsk);
}
STATIC void pyb_rtc_irq_enable (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
// we always need interrupts if repeat is enabled
if ((self->pwrmode & PYB_PWR_MODE_ACTIVE) || self->repeat) {
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
} else { // just in case it was already enabled before
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
}
self->irq_enabled = true;
}
STATIC void pyb_rtc_irq_disable (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
self->irq_enabled = false;
if (!self->repeat) { // we always need interrupts if repeat is enabled
pyb_rtc_disable_interupt();
}
}
STATIC int pyb_rtc_irq_flags (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
return self->irq_flags;
}
STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds) {
timeutils_struct_time_t tm;
uint32_t useconds;
// set date and time
mp_obj_t *items;
size_t len;
mp_obj_get_array(datetime, &len, &items);
// verify the tuple
if (len < 3 || len > 8) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
tm.tm_year = mp_obj_get_int(items[0]);
tm.tm_mon = mp_obj_get_int(items[1]);
tm.tm_mday = mp_obj_get_int(items[2]);
if (len < 7) {
useconds = 0;
} else {
useconds = mp_obj_get_int(items[6]);
}
if (len < 6) {
tm.tm_sec = 0;
} else {
tm.tm_sec = mp_obj_get_int(items[5]);
}
if (len < 5) {
tm.tm_min = 0;
} else {
tm.tm_min = mp_obj_get_int(items[4]);
}
if (len < 4) {
tm.tm_hour = 0;
} else {
tm.tm_hour = mp_obj_get_int(items[3]);
}
*seconds = timeutils_seconds_since_2000(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
return useconds;
}
/// The 8-tuple has the same format as CPython's datetime object:
///
/// (year, month, day, hours, minutes, seconds, milliseconds, tzinfo=None)
///
STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self_in, const mp_obj_t datetime) {
uint32_t seconds;
uint32_t useconds;
if (datetime != MP_OBJ_NULL) {
useconds = pyb_rtc_datetime_s_us(datetime, &seconds);
pyb_rtc_set_time (seconds, useconds / 1000);
} else {
seconds = pyb_rtc_reset();
}
// set WLAN time and date, this is needed to verify certificates
wlan_set_current_time(seconds);
return mp_const_none;
}
STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds) {
// disable the interrupt before updating anything
if (self->irq_enabled) {
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
}
// set the match value
MAP_PRCMRTCMatchSet(seconds, RTC_U16MS_CYCLES(mseconds));
self->alarmset = true;
self->alarm_time_s = seconds;
self->alarm_time_ms = mseconds;
// enabled the interrupts again if applicable
if (self->irq_enabled || self->repeat) {
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
}
}
STATIC void rtc_msec_add (uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2) {
if (msecs_1 + *msecs_2 >= 1000) { // larger than one second
*msecs_2 = (msecs_1 + *msecs_2) - 1000;
*secs += 1; // carry flag
} else {
// simply add the mseconds
*msecs_2 = msecs_1 + *msecs_2;
}
}
/******************************************************************************/
// MicroPython bindings
STATIC const mp_arg_t pyb_rtc_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_datetime, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args)];
mp_arg_parse_all(n_args, all_args, &kw_args, MP_ARRAY_SIZE(args), pyb_rtc_init_args, args);
// check the peripheral id
if (args[0].u_int != 0) {
mp_raise_OSError(MP_ENODEV);
}
// setup the object
pyb_rtc_obj_t *self = &pyb_rtc_obj;
self->base.type = &pyb_rtc_type;
// set the time and date
pyb_rtc_datetime((mp_obj_t)&pyb_rtc_obj, args[1].u_obj);
// pass it to the sleep module
pyb_sleep_set_rtc_obj (self);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
STATIC mp_obj_t pyb_rtc_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args) - 1];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), &pyb_rtc_init_args[1], args);
return pyb_rtc_datetime(pos_args[0], args[0].u_obj);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_init_obj, 1, pyb_rtc_init);
STATIC mp_obj_t pyb_rtc_now (mp_obj_t self_in) {
timeutils_struct_time_t tm;
uint32_t seconds;
uint16_t mseconds;
// get the time from the RTC
pyb_rtc_get_time(&seconds, &mseconds);
timeutils_seconds_since_2000_to_struct_time(seconds, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(mseconds * 1000),
mp_const_none
};
return mp_obj_new_tuple(8, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_now_obj, pyb_rtc_now);
STATIC mp_obj_t pyb_rtc_deinit (mp_obj_t self_in) {
pyb_rtc_reset();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_deinit_obj, pyb_rtc_deinit);
STATIC mp_obj_t pyb_rtc_alarm(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
STATIC const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_time, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_repeat, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_rtc_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args);
// check the alarm id
if (args[0].u_int != 0) {
mp_raise_OSError(MP_ENODEV);
}
uint32_t f_seconds;
uint16_t f_mseconds;
bool repeat = args[2].u_bool;
if (mp_obj_is_type(args[1].u_obj, &mp_type_tuple)) { // datetime tuple given
// repeat cannot be used with a datetime tuple
if (repeat) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
f_mseconds = pyb_rtc_datetime_s_us (args[1].u_obj, &f_seconds) / 1000;
} else { // then it must be an integer
self->alarm_ms = mp_obj_get_int(args[1].u_obj);
pyb_rtc_calc_future_time (self->alarm_ms, &f_seconds, &f_mseconds);
}
// store the repepat flag
self->repeat = repeat;
// now configure the alarm
pyb_rtc_set_alarm (self, f_seconds, f_mseconds);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_alarm_obj, 1, pyb_rtc_alarm);
STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
pyb_rtc_obj_t *self = args[0];
int32_t ms_left;
uint32_t c_seconds;
uint16_t c_mseconds;
// only alarm id 0 is available
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_OSError(MP_ENODEV);
}
// get the current time
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// calculate the ms left
ms_left = ((self->alarm_time_s * 1000) + self->alarm_time_ms) - ((c_seconds * 1000) + c_mseconds);
if (!self->alarmset || ms_left < 0) {
ms_left = 0;
}
return mp_obj_new_int(ms_left);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
STATIC mp_obj_t pyb_rtc_alarm_cancel(size_t n_args, const mp_obj_t *args) {
// only alarm id 0 is available
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_OSError(MP_ENODEV);
}
// disable the alarm
pyb_rtc_disable_alarm();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_cancel_obj, 1, 2, pyb_rtc_alarm_cancel);
/// \method irq(trigger, priority, handler, wake)
STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
pyb_rtc_obj_t *self = pos_args[0];
// save the power mode data for later
uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj);
if (pwrmode > (PYB_PWR_MODE_ACTIVE | PYB_PWR_MODE_LPDS | PYB_PWR_MODE_HIBERNATE)) {
goto invalid_args;
}
// check the trigger
if (mp_obj_get_int(args[0].u_obj) == PYB_RTC_ALARM0) {
self->pwrmode = pwrmode;
pyb_rtc_irq_enable((mp_obj_t)self);
} else {
goto invalid_args;
}
// the interrupt priority is ignored since it's already set to to highest level by the sleep module
// to make sure that the wakeup irqs are always called first when resuming from sleep
// create the callback
mp_obj_t _irq = mp_irq_new ((mp_obj_t)self, args[2].u_obj, &pyb_rtc_irq_methods);
self->irq_obj = _irq;
return _irq;
invalid_args:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
STATIC const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_rtc_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_rtc_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_now), MP_ROM_PTR(&pyb_rtc_now_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&pyb_rtc_alarm_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm_left), MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm_cancel), MP_ROM_PTR(&pyb_rtc_alarm_cancel_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_rtc_irq_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_ALARM0), MP_ROM_INT(PYB_RTC_ALARM0) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
const mp_obj_type_t pyb_rtc_type = {
{ &mp_type_type },
.name = MP_QSTR_RTC,
.make_new = pyb_rtc_make_new,
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};
STATIC const mp_irq_methods_t pyb_rtc_irq_methods = {
.init = pyb_rtc_irq,
.enable = pyb_rtc_irq_enable,
.disable = pyb_rtc_irq_disable,
.flags = pyb_rtc_irq_flags
};