You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
944 lines
34 KiB
944 lines
34 KiB
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/reader.h"
|
|
#include "py/lexer.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
|
|
#define TAB_SIZE (8)
|
|
|
|
// TODO seems that CPython allows NULL byte in the input stream
|
|
// don't know if that's intentional or not, but we don't allow it
|
|
|
|
#define MP_LEXER_EOF ((unichar)MP_READER_EOF)
|
|
#define CUR_CHAR(lex) ((lex)->chr0)
|
|
|
|
STATIC bool is_end(mp_lexer_t *lex) {
|
|
return lex->chr0 == MP_LEXER_EOF;
|
|
}
|
|
|
|
STATIC bool is_physical_newline(mp_lexer_t *lex) {
|
|
return lex->chr0 == '\n';
|
|
}
|
|
|
|
STATIC bool is_char(mp_lexer_t *lex, byte c) {
|
|
return lex->chr0 == c;
|
|
}
|
|
|
|
STATIC bool is_char_or(mp_lexer_t *lex, byte c1, byte c2) {
|
|
return lex->chr0 == c1 || lex->chr0 == c2;
|
|
}
|
|
|
|
STATIC bool is_char_or3(mp_lexer_t *lex, byte c1, byte c2, byte c3) {
|
|
return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3;
|
|
}
|
|
|
|
#if MICROPY_PY_FSTRINGS
|
|
STATIC bool is_char_or4(mp_lexer_t *lex, byte c1, byte c2, byte c3, byte c4) {
|
|
return lex->chr0 == c1 || lex->chr0 == c2 || lex->chr0 == c3 || lex->chr0 == c4;
|
|
}
|
|
#endif
|
|
|
|
STATIC bool is_char_following(mp_lexer_t *lex, byte c) {
|
|
return lex->chr1 == c;
|
|
}
|
|
|
|
STATIC bool is_char_following_or(mp_lexer_t *lex, byte c1, byte c2) {
|
|
return lex->chr1 == c1 || lex->chr1 == c2;
|
|
}
|
|
|
|
STATIC bool is_char_following_following_or(mp_lexer_t *lex, byte c1, byte c2) {
|
|
return lex->chr2 == c1 || lex->chr2 == c2;
|
|
}
|
|
|
|
STATIC bool is_char_and(mp_lexer_t *lex, byte c1, byte c2) {
|
|
return lex->chr0 == c1 && lex->chr1 == c2;
|
|
}
|
|
|
|
STATIC bool is_whitespace(mp_lexer_t *lex) {
|
|
return unichar_isspace(lex->chr0);
|
|
}
|
|
|
|
STATIC bool is_letter(mp_lexer_t *lex) {
|
|
return unichar_isalpha(lex->chr0);
|
|
}
|
|
|
|
STATIC bool is_digit(mp_lexer_t *lex) {
|
|
return unichar_isdigit(lex->chr0);
|
|
}
|
|
|
|
STATIC bool is_following_digit(mp_lexer_t *lex) {
|
|
return unichar_isdigit(lex->chr1);
|
|
}
|
|
|
|
STATIC bool is_following_base_char(mp_lexer_t *lex) {
|
|
const unichar chr1 = lex->chr1 | 0x20;
|
|
return chr1 == 'b' || chr1 == 'o' || chr1 == 'x';
|
|
}
|
|
|
|
STATIC bool is_following_odigit(mp_lexer_t *lex) {
|
|
return lex->chr1 >= '0' && lex->chr1 <= '7';
|
|
}
|
|
|
|
STATIC bool is_string_or_bytes(mp_lexer_t *lex) {
|
|
return is_char_or(lex, '\'', '\"')
|
|
#if MICROPY_PY_FSTRINGS
|
|
|| (is_char_or4(lex, 'r', 'u', 'b', 'f') && is_char_following_or(lex, '\'', '\"'))
|
|
|| (((is_char_and(lex, 'r', 'f') || is_char_and(lex, 'f', 'r'))
|
|
&& is_char_following_following_or(lex, '\'', '\"')))
|
|
#else
|
|
|| (is_char_or3(lex, 'r', 'u', 'b') && is_char_following_or(lex, '\'', '\"'))
|
|
#endif
|
|
|| ((is_char_and(lex, 'r', 'b') || is_char_and(lex, 'b', 'r'))
|
|
&& is_char_following_following_or(lex, '\'', '\"'));
|
|
}
|
|
|
|
// to easily parse utf-8 identifiers we allow any raw byte with high bit set
|
|
STATIC bool is_head_of_identifier(mp_lexer_t *lex) {
|
|
return is_letter(lex) || lex->chr0 == '_' || lex->chr0 >= 0x80;
|
|
}
|
|
|
|
STATIC bool is_tail_of_identifier(mp_lexer_t *lex) {
|
|
return is_head_of_identifier(lex) || is_digit(lex);
|
|
}
|
|
|
|
STATIC void next_char(mp_lexer_t *lex) {
|
|
if (lex->chr0 == '\n') {
|
|
// a new line
|
|
++lex->line;
|
|
lex->column = 1;
|
|
} else if (lex->chr0 == '\t') {
|
|
// a tab
|
|
lex->column = (((lex->column - 1 + TAB_SIZE) / TAB_SIZE) * TAB_SIZE) + 1;
|
|
} else {
|
|
// a character worth one column
|
|
++lex->column;
|
|
}
|
|
|
|
// shift the input queue forward
|
|
lex->chr0 = lex->chr1;
|
|
lex->chr1 = lex->chr2;
|
|
|
|
// and add the next byte from either the fstring args or the reader
|
|
#if MICROPY_PY_FSTRINGS
|
|
if (lex->fstring_args_idx) {
|
|
// if there are saved chars, then we're currently injecting fstring args
|
|
if (lex->fstring_args_idx < lex->fstring_args.len) {
|
|
lex->chr2 = lex->fstring_args.buf[lex->fstring_args_idx++];
|
|
} else {
|
|
// no more fstring arg bytes
|
|
lex->chr2 = '\0';
|
|
}
|
|
|
|
if (lex->chr0 == '\0') {
|
|
// consumed all fstring data, restore saved input queue
|
|
lex->chr0 = lex->chr0_saved;
|
|
lex->chr1 = lex->chr1_saved;
|
|
lex->chr2 = lex->chr2_saved;
|
|
// stop consuming fstring arg data
|
|
vstr_reset(&lex->fstring_args);
|
|
lex->fstring_args_idx = 0;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
lex->chr2 = lex->reader.readbyte(lex->reader.data);
|
|
}
|
|
|
|
if (lex->chr1 == '\r') {
|
|
// CR is a new line, converted to LF
|
|
lex->chr1 = '\n';
|
|
if (lex->chr2 == '\n') {
|
|
// CR LF is a single new line, throw out the extra LF
|
|
lex->chr2 = lex->reader.readbyte(lex->reader.data);
|
|
}
|
|
}
|
|
|
|
// check if we need to insert a newline at end of file
|
|
if (lex->chr2 == MP_LEXER_EOF && lex->chr1 != MP_LEXER_EOF && lex->chr1 != '\n') {
|
|
lex->chr2 = '\n';
|
|
}
|
|
}
|
|
|
|
STATIC void indent_push(mp_lexer_t *lex, size_t indent) {
|
|
if (lex->num_indent_level >= lex->alloc_indent_level) {
|
|
lex->indent_level = m_renew(uint16_t, lex->indent_level, lex->alloc_indent_level, lex->alloc_indent_level + MICROPY_ALLOC_LEXEL_INDENT_INC);
|
|
lex->alloc_indent_level += MICROPY_ALLOC_LEXEL_INDENT_INC;
|
|
}
|
|
lex->indent_level[lex->num_indent_level++] = indent;
|
|
}
|
|
|
|
STATIC size_t indent_top(mp_lexer_t *lex) {
|
|
return lex->indent_level[lex->num_indent_level - 1];
|
|
}
|
|
|
|
STATIC void indent_pop(mp_lexer_t *lex) {
|
|
lex->num_indent_level -= 1;
|
|
}
|
|
|
|
// some tricky operator encoding:
|
|
// <op> = begin with <op>, if this opchar matches then begin here
|
|
// e<op> = end with <op>, if this opchar matches then end
|
|
// c<op> = continue with <op>, if this opchar matches then continue matching
|
|
// this means if the start of two ops are the same then they are equal til the last char
|
|
|
|
STATIC const char *const tok_enc =
|
|
"()[]{},;~" // singles
|
|
":e=" // : :=
|
|
"<e=c<e=" // < <= << <<=
|
|
">e=c>e=" // > >= >> >>=
|
|
"*e=c*e=" // * *= ** **=
|
|
"+e=" // + +=
|
|
"-e=e>" // - -= ->
|
|
"&e=" // & &=
|
|
"|e=" // | |=
|
|
"/e=c/e=" // / /= // //=
|
|
"%e=" // % %=
|
|
"^e=" // ^ ^=
|
|
"@e=" // @ @=
|
|
"=e=" // = ==
|
|
"!."; // start of special cases: != . ...
|
|
|
|
// TODO static assert that number of tokens is less than 256 so we can safely make this table with byte sized entries
|
|
STATIC const uint8_t tok_enc_kind[] = {
|
|
MP_TOKEN_DEL_PAREN_OPEN, MP_TOKEN_DEL_PAREN_CLOSE,
|
|
MP_TOKEN_DEL_BRACKET_OPEN, MP_TOKEN_DEL_BRACKET_CLOSE,
|
|
MP_TOKEN_DEL_BRACE_OPEN, MP_TOKEN_DEL_BRACE_CLOSE,
|
|
MP_TOKEN_DEL_COMMA, MP_TOKEN_DEL_SEMICOLON, MP_TOKEN_OP_TILDE,
|
|
|
|
MP_TOKEN_DEL_COLON, MP_TOKEN_OP_ASSIGN,
|
|
MP_TOKEN_OP_LESS, MP_TOKEN_OP_LESS_EQUAL, MP_TOKEN_OP_DBL_LESS, MP_TOKEN_DEL_DBL_LESS_EQUAL,
|
|
MP_TOKEN_OP_MORE, MP_TOKEN_OP_MORE_EQUAL, MP_TOKEN_OP_DBL_MORE, MP_TOKEN_DEL_DBL_MORE_EQUAL,
|
|
MP_TOKEN_OP_STAR, MP_TOKEN_DEL_STAR_EQUAL, MP_TOKEN_OP_DBL_STAR, MP_TOKEN_DEL_DBL_STAR_EQUAL,
|
|
MP_TOKEN_OP_PLUS, MP_TOKEN_DEL_PLUS_EQUAL,
|
|
MP_TOKEN_OP_MINUS, MP_TOKEN_DEL_MINUS_EQUAL, MP_TOKEN_DEL_MINUS_MORE,
|
|
MP_TOKEN_OP_AMPERSAND, MP_TOKEN_DEL_AMPERSAND_EQUAL,
|
|
MP_TOKEN_OP_PIPE, MP_TOKEN_DEL_PIPE_EQUAL,
|
|
MP_TOKEN_OP_SLASH, MP_TOKEN_DEL_SLASH_EQUAL, MP_TOKEN_OP_DBL_SLASH, MP_TOKEN_DEL_DBL_SLASH_EQUAL,
|
|
MP_TOKEN_OP_PERCENT, MP_TOKEN_DEL_PERCENT_EQUAL,
|
|
MP_TOKEN_OP_CARET, MP_TOKEN_DEL_CARET_EQUAL,
|
|
MP_TOKEN_OP_AT, MP_TOKEN_DEL_AT_EQUAL,
|
|
MP_TOKEN_DEL_EQUAL, MP_TOKEN_OP_DBL_EQUAL,
|
|
};
|
|
|
|
// must have the same order as enum in lexer.h
|
|
// must be sorted according to strcmp
|
|
STATIC const char *const tok_kw[] = {
|
|
"False",
|
|
"None",
|
|
"True",
|
|
"__debug__",
|
|
"and",
|
|
"as",
|
|
"assert",
|
|
#if MICROPY_PY_ASYNC_AWAIT
|
|
"async",
|
|
"await",
|
|
#endif
|
|
"break",
|
|
"class",
|
|
"continue",
|
|
"def",
|
|
"del",
|
|
"elif",
|
|
"else",
|
|
"except",
|
|
"finally",
|
|
"for",
|
|
"from",
|
|
"global",
|
|
"if",
|
|
"import",
|
|
"in",
|
|
"is",
|
|
"lambda",
|
|
"nonlocal",
|
|
"not",
|
|
"or",
|
|
"pass",
|
|
"raise",
|
|
"return",
|
|
"try",
|
|
"while",
|
|
"with",
|
|
"yield",
|
|
};
|
|
|
|
// This is called with CUR_CHAR() before first hex digit, and should return with
|
|
// it pointing to last hex digit
|
|
// num_digits must be greater than zero
|
|
STATIC bool get_hex(mp_lexer_t *lex, size_t num_digits, mp_uint_t *result) {
|
|
mp_uint_t num = 0;
|
|
while (num_digits-- != 0) {
|
|
next_char(lex);
|
|
unichar c = CUR_CHAR(lex);
|
|
if (!unichar_isxdigit(c)) {
|
|
return false;
|
|
}
|
|
num = (num << 4) + unichar_xdigit_value(c);
|
|
}
|
|
*result = num;
|
|
return true;
|
|
}
|
|
|
|
STATIC void parse_string_literal(mp_lexer_t *lex, bool is_raw, bool is_fstring) {
|
|
// get first quoting character
|
|
char quote_char = '\'';
|
|
if (is_char(lex, '\"')) {
|
|
quote_char = '\"';
|
|
}
|
|
next_char(lex);
|
|
|
|
// work out if it's a single or triple quoted literal
|
|
size_t num_quotes;
|
|
if (is_char_and(lex, quote_char, quote_char)) {
|
|
// triple quotes
|
|
next_char(lex);
|
|
next_char(lex);
|
|
num_quotes = 3;
|
|
} else {
|
|
// single quotes
|
|
num_quotes = 1;
|
|
}
|
|
|
|
size_t n_closing = 0;
|
|
#if MICROPY_PY_FSTRINGS
|
|
if (is_fstring) {
|
|
// assume there's going to be interpolation, so prep the injection data
|
|
// fstring_args_idx==0 && len(fstring_args)>0 means we're extracting the args.
|
|
// only when fstring_args_idx>0 will we consume the arg data
|
|
// note: lex->fstring_args will be empty already (it's reset when finished)
|
|
vstr_add_str(&lex->fstring_args, ".format(");
|
|
}
|
|
#endif
|
|
|
|
while (!is_end(lex) && (num_quotes > 1 || !is_char(lex, '\n')) && n_closing < num_quotes) {
|
|
if (is_char(lex, quote_char)) {
|
|
n_closing += 1;
|
|
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
|
|
} else {
|
|
n_closing = 0;
|
|
|
|
#if MICROPY_PY_FSTRINGS
|
|
while (is_fstring && is_char(lex, '{')) {
|
|
next_char(lex);
|
|
if (is_char(lex, '{')) {
|
|
// "{{" is passed through unchanged to be handled by str.format
|
|
vstr_add_byte(&lex->vstr, '{');
|
|
next_char(lex);
|
|
} else {
|
|
// wrap each argument in (), e.g.
|
|
// f"{a,b,}, {c}" --> "{}".format((a,b), (c),)
|
|
vstr_add_byte(&lex->fstring_args, '(');
|
|
// remember the start of this argument (if we need it for f'{a=}').
|
|
size_t i = lex->fstring_args.len;
|
|
// Extract characters inside the { until the bracket level
|
|
// is zero and we reach the conversion specifier '!',
|
|
// format specifier ':', or closing '}'. The conversion
|
|
// and format specifiers are left unchanged in the format
|
|
// string to be handled by str.format.
|
|
// (MicroPython limitation) note: this is completely
|
|
// unaware of Python syntax and will not handle any
|
|
// expression containing '}' or ':'. e.g. f'{"}"}' or f'
|
|
// {foo({})}'. However, detection of the '!' will
|
|
// specifically ensure that it's followed by [rs] and
|
|
// then either the format specifier or the closing
|
|
// brace. This allows the use of e.g. != in expressions.
|
|
unsigned int nested_bracket_level = 0;
|
|
while (!is_end(lex) && (nested_bracket_level != 0
|
|
|| !(is_char_or(lex, ':', '}')
|
|
|| (is_char(lex, '!')
|
|
&& is_char_following_or(lex, 'r', 's')
|
|
&& is_char_following_following_or(lex, ':', '}'))))
|
|
) {
|
|
unichar c = CUR_CHAR(lex);
|
|
if (c == '[' || c == '{') {
|
|
nested_bracket_level += 1;
|
|
} else if (c == ']' || c == '}') {
|
|
nested_bracket_level -= 1;
|
|
}
|
|
// like the default case at the end of this function, stay 8-bit clean
|
|
vstr_add_byte(&lex->fstring_args, c);
|
|
next_char(lex);
|
|
}
|
|
if (lex->fstring_args.buf[lex->fstring_args.len - 1] == '=') {
|
|
// if the last character of the arg was '=', then inject "arg=" before the '{'.
|
|
// f'{a=}' --> 'a={}'.format(a)
|
|
vstr_add_strn(&lex->vstr, lex->fstring_args.buf + i, lex->fstring_args.len - i);
|
|
// remove the trailing '='
|
|
lex->fstring_args.len--;
|
|
}
|
|
// close the paren-wrapped arg to .format().
|
|
vstr_add_byte(&lex->fstring_args, ')');
|
|
// comma-separate args to .format().
|
|
vstr_add_byte(&lex->fstring_args, ',');
|
|
}
|
|
vstr_add_byte(&lex->vstr, '{');
|
|
}
|
|
#endif
|
|
|
|
if (is_char(lex, '\\')) {
|
|
next_char(lex);
|
|
unichar c = CUR_CHAR(lex);
|
|
if (is_raw) {
|
|
// raw strings allow escaping of quotes, but the backslash is also emitted
|
|
vstr_add_char(&lex->vstr, '\\');
|
|
} else {
|
|
switch (c) {
|
|
// note: "c" can never be MP_LEXER_EOF because next_char
|
|
// always inserts a newline at the end of the input stream
|
|
case '\n':
|
|
c = MP_LEXER_EOF;
|
|
break; // backslash escape the newline, just ignore it
|
|
case '\\':
|
|
break;
|
|
case '\'':
|
|
break;
|
|
case '"':
|
|
break;
|
|
case 'a':
|
|
c = 0x07;
|
|
break;
|
|
case 'b':
|
|
c = 0x08;
|
|
break;
|
|
case 't':
|
|
c = 0x09;
|
|
break;
|
|
case 'n':
|
|
c = 0x0a;
|
|
break;
|
|
case 'v':
|
|
c = 0x0b;
|
|
break;
|
|
case 'f':
|
|
c = 0x0c;
|
|
break;
|
|
case 'r':
|
|
c = 0x0d;
|
|
break;
|
|
case 'u':
|
|
case 'U':
|
|
if (lex->tok_kind == MP_TOKEN_BYTES) {
|
|
// b'\u1234' == b'\\u1234'
|
|
vstr_add_char(&lex->vstr, '\\');
|
|
break;
|
|
}
|
|
// Otherwise fall through.
|
|
MP_FALLTHROUGH
|
|
case 'x': {
|
|
mp_uint_t num = 0;
|
|
if (!get_hex(lex, (c == 'x' ? 2 : c == 'u' ? 4 : 8), &num)) {
|
|
// not enough hex chars for escape sequence
|
|
lex->tok_kind = MP_TOKEN_INVALID;
|
|
}
|
|
c = num;
|
|
break;
|
|
}
|
|
case 'N':
|
|
// Supporting '\N{LATIN SMALL LETTER A}' == 'a' would require keeping the
|
|
// entire Unicode name table in the core. As of Unicode 6.3.0, that's nearly
|
|
// 3MB of text; even gzip-compressed and with minimal structure, it'll take
|
|
// roughly half a meg of storage. This form of Unicode escape may be added
|
|
// later on, but it's definitely not a priority right now. -- CJA 20140607
|
|
mp_raise_NotImplementedError(MP_ERROR_TEXT("unicode name escapes"));
|
|
break;
|
|
default:
|
|
if (c >= '0' && c <= '7') {
|
|
// Octal sequence, 1-3 chars
|
|
size_t digits = 3;
|
|
mp_uint_t num = c - '0';
|
|
while (is_following_odigit(lex) && --digits != 0) {
|
|
next_char(lex);
|
|
num = num * 8 + (CUR_CHAR(lex) - '0');
|
|
}
|
|
c = num;
|
|
} else {
|
|
// unrecognised escape character; CPython lets this through verbatim as '\' and then the character
|
|
vstr_add_char(&lex->vstr, '\\');
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (c != MP_LEXER_EOF) {
|
|
#if MICROPY_PY_BUILTINS_STR_UNICODE
|
|
if (c < 0x110000 && lex->tok_kind == MP_TOKEN_STRING) {
|
|
// Valid unicode character in a str object.
|
|
vstr_add_char(&lex->vstr, c);
|
|
} else if (c < 0x100 && lex->tok_kind == MP_TOKEN_BYTES) {
|
|
// Valid byte in a bytes object.
|
|
vstr_add_byte(&lex->vstr, c);
|
|
}
|
|
#else
|
|
if (c < 0x100) {
|
|
// Without unicode everything is just added as an 8-bit byte.
|
|
vstr_add_byte(&lex->vstr, c);
|
|
}
|
|
#endif
|
|
else {
|
|
// Character out of range; this raises a generic SyntaxError.
|
|
lex->tok_kind = MP_TOKEN_INVALID;
|
|
}
|
|
}
|
|
} else {
|
|
// Add the "character" as a byte so that we remain 8-bit clean.
|
|
// This way, strings are parsed correctly whether or not they contain utf-8 chars.
|
|
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
|
|
}
|
|
}
|
|
next_char(lex);
|
|
}
|
|
|
|
// check we got the required end quotes
|
|
if (n_closing < num_quotes) {
|
|
lex->tok_kind = MP_TOKEN_LONELY_STRING_OPEN;
|
|
}
|
|
|
|
// cut off the end quotes from the token text
|
|
vstr_cut_tail_bytes(&lex->vstr, n_closing);
|
|
}
|
|
|
|
// This function returns whether it has crossed a newline or not.
|
|
// It therefore always return true if stop_at_newline is true
|
|
STATIC bool skip_whitespace(mp_lexer_t *lex, bool stop_at_newline) {
|
|
while (!is_end(lex)) {
|
|
if (is_physical_newline(lex)) {
|
|
if (stop_at_newline && lex->nested_bracket_level == 0) {
|
|
return true;
|
|
}
|
|
next_char(lex);
|
|
} else if (is_whitespace(lex)) {
|
|
next_char(lex);
|
|
} else if (is_char(lex, '#')) {
|
|
next_char(lex);
|
|
while (!is_end(lex) && !is_physical_newline(lex)) {
|
|
next_char(lex);
|
|
}
|
|
// will return true on next loop
|
|
} else if (is_char_and(lex, '\\', '\n')) {
|
|
// line-continuation, so don't return true
|
|
next_char(lex);
|
|
next_char(lex);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void mp_lexer_to_next(mp_lexer_t *lex) {
|
|
#if MICROPY_PY_FSTRINGS
|
|
if (lex->fstring_args.len && lex->fstring_args_idx == 0) {
|
|
// moving onto the next token means the literal string is complete.
|
|
// switch into injecting the format args.
|
|
vstr_add_byte(&lex->fstring_args, ')');
|
|
lex->chr0_saved = lex->chr0;
|
|
lex->chr1_saved = lex->chr1;
|
|
lex->chr2_saved = lex->chr2;
|
|
lex->chr0 = lex->fstring_args.buf[0];
|
|
lex->chr1 = lex->fstring_args.buf[1];
|
|
lex->chr2 = lex->fstring_args.buf[2];
|
|
// we've already extracted 3 chars, but setting this non-zero also
|
|
// means we'll start consuming the fstring data
|
|
lex->fstring_args_idx = 3;
|
|
}
|
|
#endif
|
|
|
|
// start new token text
|
|
vstr_reset(&lex->vstr);
|
|
|
|
// skip white space and comments
|
|
// set the newline tokens at the line and column of the preceding line:
|
|
// only advance on the pointer until a new line is crossed, save the
|
|
// line and column, and then readvance it
|
|
bool had_physical_newline = skip_whitespace(lex, true);
|
|
|
|
// set token source information
|
|
lex->tok_line = lex->line;
|
|
lex->tok_column = lex->column;
|
|
|
|
if (lex->emit_dent < 0) {
|
|
lex->tok_kind = MP_TOKEN_DEDENT;
|
|
lex->emit_dent += 1;
|
|
|
|
} else if (lex->emit_dent > 0) {
|
|
lex->tok_kind = MP_TOKEN_INDENT;
|
|
lex->emit_dent -= 1;
|
|
|
|
} else if (had_physical_newline) {
|
|
// The cursor is at the end of the previous line, pointing to a
|
|
// physical newline. Skip any remaining whitespace, comments, and
|
|
// newlines.
|
|
skip_whitespace(lex, false);
|
|
|
|
lex->tok_kind = MP_TOKEN_NEWLINE;
|
|
|
|
size_t num_spaces = lex->column - 1;
|
|
if (num_spaces == indent_top(lex)) {
|
|
} else if (num_spaces > indent_top(lex)) {
|
|
indent_push(lex, num_spaces);
|
|
lex->emit_dent += 1;
|
|
} else {
|
|
while (num_spaces < indent_top(lex)) {
|
|
indent_pop(lex);
|
|
lex->emit_dent -= 1;
|
|
}
|
|
if (num_spaces != indent_top(lex)) {
|
|
lex->tok_kind = MP_TOKEN_DEDENT_MISMATCH;
|
|
}
|
|
}
|
|
|
|
} else if (is_end(lex)) {
|
|
lex->tok_kind = MP_TOKEN_END;
|
|
|
|
} else if (is_string_or_bytes(lex)) {
|
|
// a string or bytes literal
|
|
|
|
// Python requires adjacent string/bytes literals to be automatically
|
|
// concatenated. We do it here in the tokeniser to make efficient use of RAM,
|
|
// because then the lexer's vstr can be used to accumulate the string literal,
|
|
// in contrast to creating a parse tree of strings and then joining them later
|
|
// in the compiler. It's also more compact in code size to do it here.
|
|
|
|
// MP_TOKEN_END is used to indicate that this is the first string token
|
|
lex->tok_kind = MP_TOKEN_END;
|
|
|
|
// Loop to accumulate string/bytes literals
|
|
do {
|
|
// parse type codes
|
|
bool is_raw = false;
|
|
bool is_fstring = false;
|
|
mp_token_kind_t kind = MP_TOKEN_STRING;
|
|
int n_char = 0;
|
|
if (is_char(lex, 'u')) {
|
|
n_char = 1;
|
|
} else if (is_char(lex, 'b')) {
|
|
kind = MP_TOKEN_BYTES;
|
|
n_char = 1;
|
|
if (is_char_following(lex, 'r')) {
|
|
is_raw = true;
|
|
n_char = 2;
|
|
}
|
|
} else if (is_char(lex, 'r')) {
|
|
is_raw = true;
|
|
n_char = 1;
|
|
if (is_char_following(lex, 'b')) {
|
|
kind = MP_TOKEN_BYTES;
|
|
n_char = 2;
|
|
}
|
|
#if MICROPY_PY_FSTRINGS
|
|
if (is_char_following(lex, 'f')) {
|
|
// raw-f-strings unsupported, immediately return (invalid) token.
|
|
lex->tok_kind = MP_TOKEN_FSTRING_RAW;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
#if MICROPY_PY_FSTRINGS
|
|
else if (is_char(lex, 'f')) {
|
|
if (is_char_following(lex, 'r')) {
|
|
// raw-f-strings unsupported, immediately return (invalid) token.
|
|
lex->tok_kind = MP_TOKEN_FSTRING_RAW;
|
|
break;
|
|
}
|
|
n_char = 1;
|
|
is_fstring = true;
|
|
}
|
|
#endif
|
|
|
|
// Set or check token kind
|
|
if (lex->tok_kind == MP_TOKEN_END) {
|
|
lex->tok_kind = kind;
|
|
} else if (lex->tok_kind != kind) {
|
|
// Can't concatenate string with bytes
|
|
break;
|
|
}
|
|
|
|
// Skip any type code characters
|
|
if (n_char != 0) {
|
|
next_char(lex);
|
|
if (n_char == 2) {
|
|
next_char(lex);
|
|
}
|
|
}
|
|
|
|
// Parse the literal
|
|
parse_string_literal(lex, is_raw, is_fstring);
|
|
|
|
// Skip whitespace so we can check if there's another string following
|
|
skip_whitespace(lex, true);
|
|
|
|
} while (is_string_or_bytes(lex));
|
|
|
|
} else if (is_head_of_identifier(lex)) {
|
|
lex->tok_kind = MP_TOKEN_NAME;
|
|
|
|
// get first char (add as byte to remain 8-bit clean and support utf-8)
|
|
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
|
|
next_char(lex);
|
|
|
|
// get tail chars
|
|
while (!is_end(lex) && is_tail_of_identifier(lex)) {
|
|
vstr_add_byte(&lex->vstr, CUR_CHAR(lex));
|
|
next_char(lex);
|
|
}
|
|
|
|
// Check if the name is a keyword.
|
|
// We also check for __debug__ here and convert it to its value. This is
|
|
// so the parser gives a syntax error on, eg, x.__debug__. Otherwise, we
|
|
// need to check for this special token in many places in the compiler.
|
|
const char *s = vstr_null_terminated_str(&lex->vstr);
|
|
for (size_t i = 0; i < MP_ARRAY_SIZE(tok_kw); i++) {
|
|
int cmp = strcmp(s, tok_kw[i]);
|
|
if (cmp == 0) {
|
|
lex->tok_kind = MP_TOKEN_KW_FALSE + i;
|
|
if (lex->tok_kind == MP_TOKEN_KW___DEBUG__) {
|
|
lex->tok_kind = (MP_STATE_VM(mp_optimise_value) == 0 ? MP_TOKEN_KW_TRUE : MP_TOKEN_KW_FALSE);
|
|
}
|
|
break;
|
|
} else if (cmp < 0) {
|
|
// Table is sorted and comparison was less-than, so stop searching
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else if (is_digit(lex) || (is_char(lex, '.') && is_following_digit(lex))) {
|
|
bool forced_integer = false;
|
|
if (is_char(lex, '.')) {
|
|
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
|
|
} else {
|
|
lex->tok_kind = MP_TOKEN_INTEGER;
|
|
if (is_char(lex, '0') && is_following_base_char(lex)) {
|
|
forced_integer = true;
|
|
}
|
|
}
|
|
|
|
// get first char
|
|
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
|
|
next_char(lex);
|
|
|
|
// get tail chars
|
|
while (!is_end(lex)) {
|
|
if (!forced_integer && is_char_or(lex, 'e', 'E')) {
|
|
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
|
|
vstr_add_char(&lex->vstr, 'e');
|
|
next_char(lex);
|
|
if (is_char(lex, '+') || is_char(lex, '-')) {
|
|
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
|
|
next_char(lex);
|
|
}
|
|
} else if (is_letter(lex) || is_digit(lex) || is_char(lex, '.')) {
|
|
if (is_char_or3(lex, '.', 'j', 'J')) {
|
|
lex->tok_kind = MP_TOKEN_FLOAT_OR_IMAG;
|
|
}
|
|
vstr_add_char(&lex->vstr, CUR_CHAR(lex));
|
|
next_char(lex);
|
|
} else if (is_char(lex, '_')) {
|
|
next_char(lex);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// search for encoded delimiter or operator
|
|
|
|
const char *t = tok_enc;
|
|
size_t tok_enc_index = 0;
|
|
for (; *t != 0 && !is_char(lex, *t); t += 1) {
|
|
if (*t == 'e' || *t == 'c') {
|
|
t += 1;
|
|
}
|
|
tok_enc_index += 1;
|
|
}
|
|
|
|
next_char(lex);
|
|
|
|
if (*t == 0) {
|
|
// didn't match any delimiter or operator characters
|
|
lex->tok_kind = MP_TOKEN_INVALID;
|
|
|
|
} else if (*t == '!') {
|
|
// "!=" is a special case because "!" is not a valid operator
|
|
if (is_char(lex, '=')) {
|
|
next_char(lex);
|
|
lex->tok_kind = MP_TOKEN_OP_NOT_EQUAL;
|
|
} else {
|
|
lex->tok_kind = MP_TOKEN_INVALID;
|
|
}
|
|
|
|
} else if (*t == '.') {
|
|
// "." and "..." are special cases because ".." is not a valid operator
|
|
if (is_char_and(lex, '.', '.')) {
|
|
next_char(lex);
|
|
next_char(lex);
|
|
lex->tok_kind = MP_TOKEN_ELLIPSIS;
|
|
} else {
|
|
lex->tok_kind = MP_TOKEN_DEL_PERIOD;
|
|
}
|
|
|
|
} else {
|
|
// matched a delimiter or operator character
|
|
|
|
// get the maximum characters for a valid token
|
|
t += 1;
|
|
size_t t_index = tok_enc_index;
|
|
while (*t == 'c' || *t == 'e') {
|
|
t_index += 1;
|
|
if (is_char(lex, t[1])) {
|
|
next_char(lex);
|
|
tok_enc_index = t_index;
|
|
if (*t == 'e') {
|
|
break;
|
|
}
|
|
} else if (*t == 'c') {
|
|
break;
|
|
}
|
|
t += 2;
|
|
}
|
|
|
|
// set token kind
|
|
lex->tok_kind = tok_enc_kind[tok_enc_index];
|
|
|
|
// compute bracket level for implicit line joining
|
|
if (lex->tok_kind == MP_TOKEN_DEL_PAREN_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACKET_OPEN || lex->tok_kind == MP_TOKEN_DEL_BRACE_OPEN) {
|
|
lex->nested_bracket_level += 1;
|
|
} else if (lex->tok_kind == MP_TOKEN_DEL_PAREN_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACKET_CLOSE || lex->tok_kind == MP_TOKEN_DEL_BRACE_CLOSE) {
|
|
lex->nested_bracket_level -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_lexer_t *mp_lexer_new(qstr src_name, mp_reader_t reader) {
|
|
mp_lexer_t *lex = m_new_obj(mp_lexer_t);
|
|
|
|
lex->source_name = src_name;
|
|
lex->reader = reader;
|
|
lex->line = 1;
|
|
lex->column = (size_t)-2; // account for 3 dummy bytes
|
|
lex->emit_dent = 0;
|
|
lex->nested_bracket_level = 0;
|
|
lex->alloc_indent_level = MICROPY_ALLOC_LEXER_INDENT_INIT;
|
|
lex->num_indent_level = 1;
|
|
lex->indent_level = m_new(uint16_t, lex->alloc_indent_level);
|
|
vstr_init(&lex->vstr, 32);
|
|
#if MICROPY_PY_FSTRINGS
|
|
vstr_init(&lex->fstring_args, 0);
|
|
lex->fstring_args_idx = 0;
|
|
#endif
|
|
|
|
// store sentinel for first indentation level
|
|
lex->indent_level[0] = 0;
|
|
|
|
// load lexer with start of file, advancing lex->column to 1
|
|
// start with dummy bytes and use next_char() for proper EOL/EOF handling
|
|
lex->chr0 = lex->chr1 = lex->chr2 = 0;
|
|
next_char(lex);
|
|
next_char(lex);
|
|
next_char(lex);
|
|
|
|
// preload first token
|
|
mp_lexer_to_next(lex);
|
|
|
|
// Check that the first token is in the first column unless it is a
|
|
// newline. Otherwise we convert the token kind to INDENT so that
|
|
// the parser gives a syntax error.
|
|
if (lex->tok_column != 1 && lex->tok_kind != MP_TOKEN_NEWLINE) {
|
|
lex->tok_kind = MP_TOKEN_INDENT;
|
|
}
|
|
|
|
return lex;
|
|
}
|
|
|
|
mp_lexer_t *mp_lexer_new_from_str_len(qstr src_name, const char *str, size_t len, size_t free_len) {
|
|
mp_reader_t reader;
|
|
mp_reader_new_mem(&reader, (const byte *)str, len, free_len);
|
|
return mp_lexer_new(src_name, reader);
|
|
}
|
|
|
|
#if MICROPY_READER_POSIX || MICROPY_READER_VFS
|
|
|
|
mp_lexer_t *mp_lexer_new_from_file(qstr filename) {
|
|
mp_reader_t reader;
|
|
mp_reader_new_file(&reader, filename);
|
|
return mp_lexer_new(filename, reader);
|
|
}
|
|
|
|
#if MICROPY_HELPER_LEXER_UNIX
|
|
|
|
mp_lexer_t *mp_lexer_new_from_fd(qstr filename, int fd, bool close_fd) {
|
|
mp_reader_t reader;
|
|
mp_reader_new_file_from_fd(&reader, fd, close_fd);
|
|
return mp_lexer_new(filename, reader);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
void mp_lexer_free(mp_lexer_t *lex) {
|
|
if (lex) {
|
|
lex->reader.close(lex->reader.data);
|
|
vstr_clear(&lex->vstr);
|
|
#if MICROPY_PY_FSTRINGS
|
|
vstr_clear(&lex->fstring_args);
|
|
#endif
|
|
m_del(uint16_t, lex->indent_level, lex->alloc_indent_level);
|
|
m_del_obj(mp_lexer_t, lex);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// This function is used to print the current token and should only be
|
|
// needed to debug the lexer, so it's not available via a config option.
|
|
void mp_lexer_show_token(const mp_lexer_t *lex) {
|
|
printf("(" UINT_FMT ":" UINT_FMT ") kind:%u str:%p len:%zu", lex->tok_line, lex->tok_column, lex->tok_kind, lex->vstr.buf, lex->vstr.len);
|
|
if (lex->vstr.len > 0) {
|
|
const byte *i = (const byte *)lex->vstr.buf;
|
|
const byte *j = (const byte *)i + lex->vstr.len;
|
|
printf(" ");
|
|
while (i < j) {
|
|
unichar c = utf8_get_char(i);
|
|
i = utf8_next_char(i);
|
|
if (unichar_isprint(c)) {
|
|
printf("%c", (int)c);
|
|
} else {
|
|
printf("?");
|
|
}
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
#endif // MICROPY_ENABLE_COMPILER
|
|
|