You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

281 lines
11 KiB

package compiler
// This file contains helper functions to create calls to LLVM intrinsics.
import (
"go/token"
"strconv"
"strings"
"tinygo.org/x/go-llvm"
)
// Define unimplemented intrinsic functions.
//
// Some functions are either normally implemented in Go assembly (like
// sync/atomic functions) or intentionally left undefined to be implemented
// directly in the compiler (like runtime/volatile functions). Either way, look
// for these and implement them if this is the case.
func (b *builder) defineIntrinsicFunction() {
name := b.fn.RelString(nil)
switch {
case name == "runtime.memcpy" || name == "runtime.memmove":
b.createMemoryCopyImpl()
case name == "runtime.memzero":
b.createMemoryZeroImpl()
6 months ago
case name == "runtime.stacksave":
b.createStackSaveImpl()
case name == "runtime.KeepAlive":
b.createKeepAliveImpl()
case strings.HasPrefix(name, "runtime/volatile.Load"):
b.createVolatileLoad()
case strings.HasPrefix(name, "runtime/volatile.Store"):
b.createVolatileStore()
case strings.HasPrefix(name, "sync/atomic.") && token.IsExported(b.fn.Name()):
b.createFunctionStart(true)
returnValue := b.createAtomicOp(b.fn.Name())
if !returnValue.IsNil() {
b.CreateRet(returnValue)
} else {
b.CreateRetVoid()
}
}
}
// createMemoryCopyImpl creates a call to a builtin LLVM memcpy or memmove
// function, declaring this function if needed. These calls are treated
// specially by optimization passes possibly resulting in better generated code,
// and will otherwise be lowered to regular libc memcpy/memmove calls.
func (b *builder) createMemoryCopyImpl() {
b.createFunctionStart(true)
fnName := "llvm." + b.fn.Name() + ".p0.p0.i" + strconv.Itoa(b.uintptrType.IntTypeWidth())
llvmFn := b.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
fnType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.dataPtrType, b.dataPtrType, b.uintptrType, b.ctx.Int1Type()}, false)
llvmFn = llvm.AddFunction(b.mod, fnName, fnType)
}
var params []llvm.Value
for _, param := range b.fn.Params {
params = append(params, b.getValue(param, getPos(b.fn)))
}
params = append(params, llvm.ConstInt(b.ctx.Int1Type(), 0, false))
b.CreateCall(llvmFn.GlobalValueType(), llvmFn, params, "")
b.CreateRetVoid()
}
// createMemoryZeroImpl creates calls to llvm.memset.* to zero a block of
// memory, declaring the function if needed. These calls will be lowered to
// regular libc memset calls if they aren't optimized out in a different way.
func (b *builder) createMemoryZeroImpl() {
b.createFunctionStart(true)
llvmFn := b.getMemsetFunc()
params := []llvm.Value{
b.getValue(b.fn.Params[0], getPos(b.fn)),
llvm.ConstInt(b.ctx.Int8Type(), 0, false),
b.getValue(b.fn.Params[1], getPos(b.fn)),
llvm.ConstInt(b.ctx.Int1Type(), 0, false),
}
b.CreateCall(llvmFn.GlobalValueType(), llvmFn, params, "")
b.CreateRetVoid()
}
6 months ago
// createStackSaveImpl creates a call to llvm.stacksave.p0 to read the current
// stack pointer.
func (b *builder) createStackSaveImpl() {
b.createFunctionStart(true)
sp := b.readStackPointer()
b.CreateRet(sp)
}
// Return the llvm.memset.p0.i8 function declaration.
func (c *compilerContext) getMemsetFunc() llvm.Value {
fnName := "llvm.memset.p0.i" + strconv.Itoa(c.uintptrType.IntTypeWidth())
llvmFn := c.mod.NamedFunction(fnName)
if llvmFn.IsNil() {
fnType := llvm.FunctionType(c.ctx.VoidType(), []llvm.Type{c.dataPtrType, c.ctx.Int8Type(), c.uintptrType, c.ctx.Int1Type()}, false)
llvmFn = llvm.AddFunction(c.mod, fnName, fnType)
}
return llvmFn
}
// createKeepAlive creates the runtime.KeepAlive function. It is implemented
// using inline assembly.
func (b *builder) createKeepAliveImpl() {
b.createFunctionStart(true)
// Get the underlying value of the interface value.
interfaceValue := b.getValue(b.fn.Params[0], getPos(b.fn))
pointerValue := b.CreateExtractValue(interfaceValue, 1, "")
// Create an equivalent of the following C code, which is basically just a
// nop but ensures the pointerValue is kept alive:
//
// __asm__ __volatile__("" : : "r"(pointerValue))
//
// It should be portable to basically everything as the "r" register type
// exists basically everywhere.
asmType := llvm.FunctionType(b.ctx.VoidType(), []llvm.Type{b.dataPtrType}, false)
asmFn := llvm.InlineAsm(asmType, "", "r", true, false, 0, false)
b.createCall(asmType, asmFn, []llvm.Value{pointerValue}, "")
b.CreateRetVoid()
}
var mathToLLVMMapping = map[string]string{
"math.Ceil": "llvm.ceil.f64",
"math.Exp": "llvm.exp.f64",
"math.Exp2": "llvm.exp2.f64",
"math.Floor": "llvm.floor.f64",
"math.Log": "llvm.log.f64",
"math.Sqrt": "llvm.sqrt.f64",
"math.Trunc": "llvm.trunc.f64",
}
// defineMathOp defines a math function body as a call to a LLVM intrinsic,
// instead of the regular Go implementation. This allows LLVM to reason about
// the math operation and (depending on the architecture) allows it to lower the
// operation to very fast floating point instructions. If this is not possible,
// LLVM will emit a call to a libm function that implements the same operation.
//
// One example of an optimization that LLVM can do is to convert
// float32(math.Sqrt(float64(v))) to a 32-bit floating point operation, which is
// beneficial on architectures where 64-bit floating point operations are (much)
// more expensive than 32-bit ones.
func (b *builder) defineMathOp() {
b.createFunctionStart(true)
llvmName := mathToLLVMMapping[b.fn.RelString(nil)]
if llvmName == "" {
panic("unreachable: unknown math operation") // sanity check
}
llvmFn := b.mod.NamedFunction(llvmName)
if llvmFn.IsNil() {
// The intrinsic doesn't exist yet, so declare it.
// At the moment, all supported intrinsics have the form "double
// foo(double %x)" so we can hardcode the signature here.
llvmType := llvm.FunctionType(b.ctx.DoubleType(), []llvm.Type{b.ctx.DoubleType()}, false)
llvmFn = llvm.AddFunction(b.mod, llvmName, llvmType)
}
// Create a call to the intrinsic.
args := make([]llvm.Value, len(b.fn.Params))
for i, param := range b.fn.Params {
args[i] = b.getValue(param, getPos(b.fn))
}
result := b.CreateCall(llvmFn.GlobalValueType(), llvmFn, args, "")
b.CreateRet(result)
}
// Implement most math/bits functions.
//
// This implements all the functions that operate on bits. It does not yet
// implement the arithmetic functions (like bits.Add), which also have LLVM
// intrinsics.
func (b *builder) defineMathBitsIntrinsic() bool {
if b.fn.Pkg.Pkg.Path() != "math/bits" {
return false
}
name := b.fn.Name()
switch name {
case "LeadingZeros", "LeadingZeros8", "LeadingZeros16", "LeadingZeros32", "LeadingZeros64",
"TrailingZeros", "TrailingZeros8", "TrailingZeros16", "TrailingZeros32", "TrailingZeros64":
b.createFunctionStart(true)
param := b.getValue(b.fn.Params[0], b.fn.Pos())
valueType := param.Type()
var intrinsicName string
if strings.HasPrefix(name, "Leading") { // LeadingZeros
intrinsicName = "llvm.ctlz.i" + strconv.Itoa(valueType.IntTypeWidth())
} else { // TrailingZeros
intrinsicName = "llvm.cttz.i" + strconv.Itoa(valueType.IntTypeWidth())
}
llvmFn := b.mod.NamedFunction(intrinsicName)
llvmFnType := llvm.FunctionType(valueType, []llvm.Type{valueType, b.ctx.Int1Type()}, false)
if llvmFn.IsNil() {
llvmFn = llvm.AddFunction(b.mod, intrinsicName, llvmFnType)
}
result := b.createCall(llvmFnType, llvmFn, []llvm.Value{
param,
llvm.ConstInt(b.ctx.Int1Type(), 0, false),
}, "")
result = b.createZExtOrTrunc(result, b.intType)
b.CreateRet(result)
return true
case "Len", "Len8", "Len16", "Len32", "Len64":
// bits.Len can be implemented as:
// (unsafe.Sizeof(v) * 8) - bits.LeadingZeros(n)
// Not sure why this isn't already done in the standard library, as it
// is much simpler than a lookup table.
b.createFunctionStart(true)
param := b.getValue(b.fn.Params[0], b.fn.Pos())
valueType := param.Type()
valueBits := valueType.IntTypeWidth()
intrinsicName := "llvm.ctlz.i" + strconv.Itoa(valueBits)
llvmFn := b.mod.NamedFunction(intrinsicName)
llvmFnType := llvm.FunctionType(valueType, []llvm.Type{valueType, b.ctx.Int1Type()}, false)
if llvmFn.IsNil() {
llvmFn = llvm.AddFunction(b.mod, intrinsicName, llvmFnType)
}
result := b.createCall(llvmFnType, llvmFn, []llvm.Value{
param,
llvm.ConstInt(b.ctx.Int1Type(), 0, false),
}, "")
result = b.createZExtOrTrunc(result, b.intType)
maxLen := llvm.ConstInt(b.intType, uint64(valueBits), false) // number of bits in the value
result = b.CreateSub(maxLen, result, "")
b.CreateRet(result)
return true
case "OnesCount", "OnesCount8", "OnesCount16", "OnesCount32", "OnesCount64":
b.createFunctionStart(true)
param := b.getValue(b.fn.Params[0], b.fn.Pos())
valueType := param.Type()
intrinsicName := "llvm.ctpop.i" + strconv.Itoa(valueType.IntTypeWidth())
llvmFn := b.mod.NamedFunction(intrinsicName)
llvmFnType := llvm.FunctionType(valueType, []llvm.Type{valueType}, false)
if llvmFn.IsNil() {
llvmFn = llvm.AddFunction(b.mod, intrinsicName, llvmFnType)
}
result := b.createCall(llvmFnType, llvmFn, []llvm.Value{param}, "")
result = b.createZExtOrTrunc(result, b.intType)
b.CreateRet(result)
return true
case "Reverse", "Reverse8", "Reverse16", "Reverse32", "Reverse64",
"ReverseBytes", "ReverseBytes16", "ReverseBytes32", "ReverseBytes64":
b.createFunctionStart(true)
param := b.getValue(b.fn.Params[0], b.fn.Pos())
valueType := param.Type()
var intrinsicName string
if strings.HasPrefix(name, "ReverseBytes") {
intrinsicName = "llvm.bswap.i" + strconv.Itoa(valueType.IntTypeWidth())
} else { // Reverse
intrinsicName = "llvm.bitreverse.i" + strconv.Itoa(valueType.IntTypeWidth())
}
llvmFn := b.mod.NamedFunction(intrinsicName)
llvmFnType := llvm.FunctionType(valueType, []llvm.Type{valueType}, false)
if llvmFn.IsNil() {
llvmFn = llvm.AddFunction(b.mod, intrinsicName, llvmFnType)
}
result := b.createCall(llvmFnType, llvmFn, []llvm.Value{param}, "")
b.CreateRet(result)
return true
case "RotateLeft", "RotateLeft8", "RotateLeft16", "RotateLeft32", "RotateLeft64":
// Warning: the documentation says these functions must be constant time.
// I do not think LLVM guarantees this, but there's a good chance LLVM
// already recognized the rotate instruction so it probably won't get
// any _worse_ by implementing these rotate functions.
b.createFunctionStart(true)
x := b.getValue(b.fn.Params[0], b.fn.Pos())
k := b.getValue(b.fn.Params[1], b.fn.Pos())
valueType := x.Type()
intrinsicName := "llvm.fshl.i" + strconv.Itoa(valueType.IntTypeWidth())
llvmFn := b.mod.NamedFunction(intrinsicName)
llvmFnType := llvm.FunctionType(valueType, []llvm.Type{valueType, valueType, valueType}, false)
if llvmFn.IsNil() {
llvmFn = llvm.AddFunction(b.mod, intrinsicName, llvmFnType)
}
k = b.createZExtOrTrunc(k, valueType)
result := b.createCall(llvmFnType, llvmFn, []llvm.Value{x, x, k}, "")
b.CreateRet(result)
return true
default:
return false
}
}