You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

611 lines
23 KiB

package compiler
// This file implements the 'defer' keyword in Go.
// Defer statements are implemented by transforming the function in the
// following way:
// * Creating an alloca in the entry block that contains a pointer (initially
// null) to the linked list of defer frames.
// * Every time a defer statement is executed, a new defer frame is created
// using alloca with a pointer to the previous defer frame, and the head
// pointer in the entry block is replaced with a pointer to this defer
// frame.
// * On return, runtime.rundefers is called which calls all deferred functions
// from the head of the linked list until it has gone through all defer
// frames.
import (
"go/types"
"strconv"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// supportsRecover returns whether the compiler supports the recover() builtin
// for the current architecture.
func (b *builder) supportsRecover() bool {
switch b.archFamily() {
case "wasm32":
// Probably needs to be implemented using the exception handling
// proposal of WebAssembly:
// https://github.com/WebAssembly/exception-handling
return false
case "riscv64", "xtensa":
// TODO: add support for these architectures
return false
default:
return true
}
}
// hasDeferFrame returns whether the current function needs to catch panics and
// run defers.
func (b *builder) hasDeferFrame() bool {
if b.fn.Recover == nil {
return false
}
return b.supportsRecover()
}
// deferInitFunc sets up this function for future deferred calls. It must be
// called from within the entry block when this function contains deferred
// calls.
func (b *builder) deferInitFunc() {
// Some setup.
b.deferFuncs = make(map[*ssa.Function]int)
b.deferInvokeFuncs = make(map[string]int)
b.deferClosureFuncs = make(map[*ssa.Function]int)
b.deferExprFuncs = make(map[ssa.Value]int)
b.deferBuiltinFuncs = make(map[ssa.Value]deferBuiltin)
// Create defer list pointer.
deferType := llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)
b.deferPtr = b.CreateAlloca(deferType, "deferPtr")
b.CreateStore(llvm.ConstPointerNull(deferType), b.deferPtr)
if b.hasDeferFrame() {
// Set up the defer frame with the current stack pointer.
// This assumes that the stack pointer doesn't move outside of the
// function prologue/epilogue (an invariant maintained by TinyGo but
// possibly broken by the C alloca function).
// The frame pointer is _not_ saved, because it is marked as clobbered
// in the setjmp-like inline assembly.
deferFrameType := b.getLLVMRuntimeType("deferFrame")
b.deferFrame = b.CreateAlloca(deferFrameType, "deferframe.buf")
stackPointer := b.readStackPointer()
b.createRuntimeCall("setupDeferFrame", []llvm.Value{b.deferFrame, stackPointer}, "")
// Create the landing pad block, which is where control transfers after
// a panic.
b.landingpad = b.ctx.AddBasicBlock(b.llvmFn, "lpad")
}
}
// createLandingPad fills in the landing pad block. This block runs the deferred
// functions and returns (by jumping to the recover block). If the function is
// still panicking after the defers are run, the panic will be re-raised in
// destroyDeferFrame.
func (b *builder) createLandingPad() {
b.SetInsertPointAtEnd(b.landingpad)
// Add debug info, if needed.
// The location used is the closing bracket of the function.
if b.Debug {
pos := b.program.Fset.Position(b.fn.Syntax().End())
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{})
}
b.createRunDefers()
// Continue at the 'recover' block, which returns to the parent in an
// appropriate way.
b.CreateBr(b.blockEntries[b.fn.Recover])
}
// createInvokeCheckpoint saves the function state at the given point, to
// continue at the landing pad if a panic happened. This is implemented using a
// setjmp-like construct.
func (b *builder) createInvokeCheckpoint() {
// Construct inline assembly equivalents of setjmp.
// The assembly works as follows:
// * All registers (both callee-saved and caller saved) are clobbered
// after the inline assembly returns.
// * The assembly stores the address just past the end of the assembly
// into the jump buffer.
// * The return value (eax, rax, r0, etc) is set to zero in the inline
// assembly but set to an unspecified non-zero value when jumping using
// a longjmp.
var asmString, constraints string
resultType := b.uintptrType
switch b.archFamily() {
case "i386":
asmString = `
xorl %eax, %eax
movl $$1f, 4(%ebx)
1:`
constraints = "={eax},{ebx},~{ebx},~{ecx},~{edx},~{esi},~{edi},~{ebp},~{xmm0},~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{fpsr},~{fpcr},~{flags},~{dirflag},~{memory}"
// This doesn't include the floating point stack because TinyGo uses
// newer floating point instructions.
case "x86_64":
asmString = `
leaq 1f(%rip), %rax
movq %rax, 8(%rbx)
xorq %rax, %rax
1:`
constraints = "={rax},{rbx},~{rbx},~{rcx},~{rdx},~{rsi},~{rdi},~{rbp},~{r8},~{r9},~{r10},~{r11},~{r12},~{r13},~{r14},~{r15},~{xmm0},~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{xmm8},~{xmm9},~{xmm10},~{xmm11},~{xmm12},~{xmm13},~{xmm14},~{xmm15},~{xmm16},~{xmm17},~{xmm18},~{xmm19},~{xmm20},~{xmm21},~{xmm22},~{xmm23},~{xmm24},~{xmm25},~{xmm26},~{xmm27},~{xmm28},~{xmm29},~{xmm30},~{xmm31},~{fpsr},~{fpcr},~{flags},~{dirflag},~{memory}"
// This list doesn't include AVX/AVX512 registers because TinyGo
// doesn't currently enable support for AVX instructions.
case "arm":
// Note: the following assembly takes into account that the PC is
// always 4 bytes ahead on ARM. The PC that is stored always points
// to the instruction just after the assembly fragment so that
// tinygo_longjmp lands at the correct instruction.
if b.isThumb() {
// Instructions are 2 bytes in size.
asmString = `
movs r0, #0
mov r2, pc
str r2, [r1, #4]`
} else {
// Instructions are 4 bytes in size.
asmString = `
str pc, [r1, #4]
movs r0, #0`
}
constraints = "={r0},{r1},~{r1},~{r2},~{r3},~{r4},~{r5},~{r6},~{r7},~{r8},~{r9},~{r10},~{r11},~{r12},~{lr},~{q0},~{q1},~{q2},~{q3},~{q4},~{q5},~{q6},~{q7},~{q8},~{q9},~{q10},~{q11},~{q12},~{q13},~{q14},~{q15},~{cpsr},~{memory}"
case "aarch64":
asmString = `
adr x2, 1f
str x2, [x1, #8]
mov x0, #0
1:
`
constraints = "={x0},{x1},~{x1},~{x2},~{x3},~{x4},~{x5},~{x6},~{x7},~{x8},~{x9},~{x10},~{x11},~{x12},~{x13},~{x14},~{x15},~{x16},~{x17},~{x18},~{x19},~{x20},~{x21},~{x22},~{x23},~{x24},~{x25},~{x26},~{x27},~{x28},~{fp},~{lr},~{q0},~{q1},~{q2},~{q3},~{q4},~{q5},~{q6},~{q7},~{q8},~{q9},~{q10},~{q11},~{q12},~{q13},~{q14},~{q15},~{q16},~{q17},~{q18},~{q19},~{q20},~{q21},~{q22},~{q23},~{q24},~{q25},~{q26},~{q27},~{q28},~{q29},~{q30},~{nzcv},~{ffr},~{vg},~{memory}"
// TODO: SVE registers, which we don't use in TinyGo at the moment.
case "avr":
// Note: the Y register (R28:R29) is a fixed register and therefore
// needs to be saved manually. TODO: do this only once per function with
// a defer frame, not for every call.
resultType = b.ctx.Int8Type()
asmString = `
ldi r24, pm_lo8(1f)
ldi r25, pm_hi8(1f)
std z+2, r24
std z+3, r25
std z+4, r28
std z+5, r29
ldi r24, 0
1:`
constraints = "={r24},z,~{r0},~{r2},~{r3},~{r4},~{r5},~{r6},~{r7},~{r8},~{r9},~{r10},~{r11},~{r12},~{r13},~{r14},~{r15},~{r16},~{r17},~{r18},~{r19},~{r20},~{r21},~{r22},~{r23},~{r25},~{r26},~{r27}"
case "riscv32":
asmString = `
la a2, 1f
sw a2, 4(a1)
li a0, 0
1:`
constraints = "={a0},{a1},~{a1},~{a2},~{a3},~{a4},~{a5},~{a6},~{a7},~{s0},~{s1},~{s2},~{s3},~{s4},~{s5},~{s6},~{s7},~{s8},~{s9},~{s10},~{s11},~{t0},~{t1},~{t2},~{t3},~{t4},~{t5},~{t6},~{ra},~{f0},~{f1},~{f2},~{f3},~{f4},~{f5},~{f6},~{f7},~{f8},~{f9},~{f10},~{f11},~{f12},~{f13},~{f14},~{f15},~{f16},~{f17},~{f18},~{f19},~{f20},~{f21},~{f22},~{f23},~{f24},~{f25},~{f26},~{f27},~{f28},~{f29},~{f30},~{f31},~{memory}"
default:
// This case should have been handled by b.supportsRecover().
b.addError(b.fn.Pos(), "unknown architecture for defer: "+b.archFamily())
}
asmType := llvm.FunctionType(resultType, []llvm.Type{b.deferFrame.Type()}, false)
asm := llvm.InlineAsm(asmType, asmString, constraints, false, false, 0, false)
result := b.CreateCall(asm, []llvm.Value{b.deferFrame}, "setjmp")
result.AddCallSiteAttribute(-1, b.ctx.CreateEnumAttribute(llvm.AttributeKindID("returns_twice"), 0))
isZero := b.CreateICmp(llvm.IntEQ, result, llvm.ConstInt(resultType, 0, false), "setjmp.result")
continueBB := b.insertBasicBlock("")
b.CreateCondBr(isZero, continueBB, b.landingpad)
b.SetInsertPointAtEnd(continueBB)
b.blockExits[b.currentBlock] = continueBB
}
// isInLoop checks if there is a path from a basic block to itself.
func isInLoop(start *ssa.BasicBlock) bool {
// Use a breadth-first search to scan backwards through the block graph.
queue := []*ssa.BasicBlock{start}
checked := map[*ssa.BasicBlock]struct{}{}
for len(queue) > 0 {
// pop a block off of the queue
block := queue[len(queue)-1]
queue = queue[:len(queue)-1]
// Search through predecessors.
// Searching backwards means that this is pretty fast when the block is close to the start of the function.
// Defers are often placed near the start of the function.
for _, pred := range block.Preds {
if pred == start {
// cycle found
return true
}
if _, ok := checked[pred]; ok {
// block already checked
continue
}
// add to queue and checked map
queue = append(queue, pred)
checked[pred] = struct{}{}
}
}
return false
}
// createDefer emits a single defer instruction, to be run when this function
// returns.
func (b *builder) createDefer(instr *ssa.Defer) {
// The pointer to the previous defer struct, which we will replace to
// make a linked list.
next := b.CreateLoad(b.deferPtr, "defer.next")
var values []llvm.Value
valueTypes := []llvm.Type{b.uintptrType, next.Type()}
if instr.Call.IsInvoke() {
// Method call on an interface.
// Get callback type number.
methodName := instr.Call.Method.FullName()
if _, ok := b.deferInvokeFuncs[methodName]; !ok {
b.deferInvokeFuncs[methodName] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferInvokeFuncs[methodName]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by the call parameters).
itf := b.getValue(instr.Call.Value) // interface
typecode := b.CreateExtractValue(itf, 0, "invoke.func.typecode")
receiverValue := b.CreateExtractValue(itf, 1, "invoke.func.receiver")
values = []llvm.Value{callback, next, typecode, receiverValue}
valueTypes = append(valueTypes, b.uintptrType, b.i8ptrType)
for _, arg := range instr.Call.Args {
val := b.getValue(arg)
values = append(values, val)
valueTypes = append(valueTypes, val.Type())
}
} else if callee, ok := instr.Call.Value.(*ssa.Function); ok {
// Regular function call.
if _, ok := b.deferFuncs[callee]; !ok {
b.deferFuncs[callee] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, callee)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferFuncs[callee]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
} else if makeClosure, ok := instr.Call.Value.(*ssa.MakeClosure); ok {
// Immediately applied function literal with free variables.
// Extract the context from the closure. We won't need the function
// pointer.
// TODO: ignore this closure entirely and put pointers to the free
// variables directly in the defer struct, avoiding a memory allocation.
closure := b.getValue(instr.Call.Value)
context := b.CreateExtractValue(closure, 0, "")
// Get the callback number.
fn := makeClosure.Fn.(*ssa.Function)
if _, ok := b.deferClosureFuncs[fn]; !ok {
b.deferClosureFuncs[fn] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, makeClosure)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferClosureFuncs[fn]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
values = append(values, context)
valueTypes = append(valueTypes, context.Type())
} else if builtin, ok := instr.Call.Value.(*ssa.Builtin); ok {
var argTypes []types.Type
var argValues []llvm.Value
for _, arg := range instr.Call.Args {
argTypes = append(argTypes, arg.Type())
argValues = append(argValues, b.getValue(arg))
}
if _, ok := b.deferBuiltinFuncs[instr.Call.Value]; !ok {
b.deferBuiltinFuncs[instr.Call.Value] = deferBuiltin{
callName: builtin.Name(),
pos: builtin.Pos(),
argTypes: argTypes,
callback: len(b.allDeferFuncs),
}
b.allDeferFuncs = append(b.allDeferFuncs, instr.Call.Value)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferBuiltinFuncs[instr.Call.Value].callback), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range argValues {
values = append(values, param)
valueTypes = append(valueTypes, param.Type())
}
} else {
funcValue := b.getValue(instr.Call.Value)
if _, ok := b.deferExprFuncs[instr.Call.Value]; !ok {
b.deferExprFuncs[instr.Call.Value] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferExprFuncs[instr.Call.Value]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next, funcValue}
valueTypes = append(valueTypes, funcValue.Type())
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
}
// Make a struct out of the collected values to put in the deferred call
// struct.
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCall := llvm.ConstNull(deferredCallType)
for i, value := range values {
deferredCall = b.CreateInsertValue(deferredCall, value, i, "")
}
// Put this struct in an allocation.
var alloca llvm.Value
if !isInLoop(instr.Block()) {
// This can safely use a stack allocation.
alloca = llvmutil.CreateEntryBlockAlloca(b.Builder, deferredCallType, "defer.alloca")
} else {
// This may be hit a variable number of times, so use a heap allocation.
size := b.targetData.TypeAllocSize(deferredCallType)
sizeValue := llvm.ConstInt(b.uintptrType, size, false)
nilPtr := llvm.ConstNull(b.i8ptrType)
allocCall := b.createRuntimeCall("alloc", []llvm.Value{sizeValue, nilPtr}, "defer.alloc.call")
alloca = b.CreateBitCast(allocCall, llvm.PointerType(deferredCallType, 0), "defer.alloc")
}
if b.NeedsStackObjects {
b.trackPointer(alloca)
}
b.CreateStore(deferredCall, alloca)
// Push it on top of the linked list by replacing deferPtr.
allocaCast := b.CreateBitCast(alloca, next.Type(), "defer.alloca.cast")
b.CreateStore(allocaCast, b.deferPtr)
}
// createRunDefers emits code to run all deferred functions.
func (b *builder) createRunDefers() {
// Add a loop like the following:
// for stack != nil {
// _stack := stack
// stack = stack.next
// switch _stack.callback {
// case 0:
// // run first deferred call
// case 1:
// // run second deferred call
// // etc.
// default:
// unreachable
// }
// }
// Create loop, in the order: loophead, loop, callback0, callback1, ..., unreachable, end.
end := b.insertBasicBlock("rundefers.end")
unreachable := b.ctx.InsertBasicBlock(end, "rundefers.default")
loop := b.ctx.InsertBasicBlock(unreachable, "rundefers.loop")
loophead := b.ctx.InsertBasicBlock(loop, "rundefers.loophead")
b.CreateBr(loophead)
// Create loop head:
// for stack != nil {
b.SetInsertPointAtEnd(loophead)
deferData := b.CreateLoad(b.deferPtr, "")
stackIsNil := b.CreateICmp(llvm.IntEQ, deferData, llvm.ConstPointerNull(deferData.Type()), "stackIsNil")
b.CreateCondBr(stackIsNil, end, loop)
// Create loop body:
// _stack := stack
// stack = stack.next
// switch stack.callback {
b.SetInsertPointAtEnd(loop)
nextStackGEP := b.CreateInBoundsGEP(deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 1, false), // .next field
}, "stack.next.gep")
nextStack := b.CreateLoad(nextStackGEP, "stack.next")
b.CreateStore(nextStack, b.deferPtr)
gep := b.CreateInBoundsGEP(deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 0, false), // .callback field
}, "callback.gep")
callback := b.CreateLoad(gep, "callback")
sw := b.CreateSwitch(callback, unreachable, len(b.allDeferFuncs))
for i, callback := range b.allDeferFuncs {
// Create switch case, for example:
// case 0:
// // run first deferred call
block := b.insertBasicBlock("rundefers.callback" + strconv.Itoa(i))
sw.AddCase(llvm.ConstInt(b.uintptrType, uint64(i), false), block)
b.SetInsertPointAtEnd(block)
switch callback := callback.(type) {
case *ssa.CallCommon:
// Call on an value or interface value.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
if !callback.IsInvoke() {
//Expect funcValue to be passed through the deferred call.
valueTypes = append(valueTypes, b.getFuncType(callback.Signature()))
} else {
//Expect typecode
valueTypes = append(valueTypes, b.uintptrType, b.i8ptrType)
}
for _, arg := range callback.Args {
valueTypes = append(valueTypes, b.getLLVMType(arg.Type()))
}
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCallPtr := b.CreateBitCast(deferData, llvm.PointerType(deferredCallType, 0), "defercall")
// Extract the params from the struct (including receiver).
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferredCallPtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
var fnPtr llvm.Value
if !callback.IsInvoke() {
// Isolate the func value.
funcValue := forwardParams[0]
forwardParams = forwardParams[1:]
//Get function pointer and context
fp, context := b.decodeFuncValue(funcValue, callback.Signature())
fnPtr = fp
//Pass context
forwardParams = append(forwardParams, context)
} else {
// Move typecode from the start to the end of the list of
// parameters.
forwardParams = append(forwardParams[1:], forwardParams[0])
fnPtr = b.getInvokeFunction(callback)
// Add the context parameter. An interface call cannot also be a
// closure but we have to supply the parameter anyway for platforms
// with a strict calling convention.
forwardParams = append(forwardParams, llvm.Undef(b.i8ptrType))
}
b.createCall(fnPtr, forwardParams, "")
case *ssa.Function:
// Direct call.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
for _, param := range getParams(callback.Signature) {
valueTypes = append(valueTypes, b.getLLVMType(param.Type()))
}
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCallPtr := b.CreateBitCast(deferData, llvm.PointerType(deferredCallType, 0), "defercall")
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := range getParams(callback.Signature) {
gep := b.CreateInBoundsGEP(deferredCallPtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Plain TinyGo functions add some extra parameters to implement async functionality and function recievers.
// These parameters should not be supplied when calling into an external C/ASM function.
if !b.getFunctionInfo(callback).exported {
// Add the context parameter. We know it is ignored by the receiving
// function, but we have to pass one anyway.
forwardParams = append(forwardParams, llvm.Undef(b.i8ptrType))
}
// Call real function.
b.createInvoke(b.getFunction(callback), forwardParams, "")
case *ssa.MakeClosure:
// Get the real defer struct type and cast to it.
fn := callback.Fn.(*ssa.Function)
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
params := fn.Signature.Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
valueTypes = append(valueTypes, b.i8ptrType) // closure
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCallPtr := b.CreateBitCast(deferData, llvm.PointerType(deferredCallType, 0), "defercall")
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferredCallPtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Call deferred function.
b.createCall(b.getFunction(fn), forwardParams, "")
case *ssa.Builtin:
db := b.deferBuiltinFuncs[callback]
//Get parameter types
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
//Get signature from call results
params := callback.Type().Underlying().(*types.Signature).Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCallPtr := b.CreateBitCast(deferData, llvm.PointerType(deferredCallType, 0), "defercall")
// Extract the params from the struct.
var argValues []llvm.Value
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 0; i < params.Len(); i++ {
gep := b.CreateInBoundsGEP(deferredCallPtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
argValues = append(argValues, forwardParam)
}
_, err := b.createBuiltin(db.argTypes, argValues, db.callName, db.pos)
if err != nil {
b.diagnostics = append(b.diagnostics, err)
}
default:
panic("unknown deferred function type")
}
// Branch back to the start of the loop.
b.CreateBr(loophead)
}
// Create default unreachable block:
// default:
// unreachable
// }
b.SetInsertPointAtEnd(unreachable)
b.CreateUnreachable()
// End of loop.
b.SetInsertPointAtEnd(end)
}