You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

599 lines
21 KiB

package compiler
// This file manages symbols, that is, functions and globals. It reads their
// pragmas, determines the link name, etc.
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"strconv"
"strings"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"github.com/tinygo-org/tinygo/loader"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// functionInfo contains some information about a function or method. In
// particular, it contains information obtained from pragmas.
//
// The linkName value contains a valid link name, even if //go:linkname is not
// present.
type functionInfo struct {
wasmModule string // go:wasm-module
wasmName string // wasm-export-name or wasm-import-name in the IR
linkName string // go:linkname, go:export - the IR function name
section string // go:section - object file section name
exported bool // go:export, CGo
transform: refactor interrupt lowering Instead of doing everything in the interrupt lowering pass, generate some more code in gen-device to declare interrupt handler functions and do some work in the compiler so that interrupt lowering becomes a lot simpler. This has several benefits: - Overall code is smaller, in particular the interrupt lowering pass. - The code should be a bit less "magical" and instead a bit easier to read. In particular, instead of having a magic runtime.callInterruptHandler (that is fully written by the interrupt lowering pass), the runtime calls a generated function like device/sifive.InterruptHandler where this switch already exists in code. - Debug information is improved. This can be helpful during actual debugging but is also useful for other uses of DWARF debug information. For an example on debug information improvement, this is what a backtrace might look like before this commit: Breakpoint 1, 0x00000b46 in UART0_IRQHandler () (gdb) bt #0 0x00000b46 in UART0_IRQHandler () #1 <signal handler called> [..etc] Notice that the debugger doesn't see the source code location where it has stopped. After this commit, breaking at the same line might look like this: Breakpoint 1, (*machine.UART).handleInterrupt (arg1=..., uart=<optimized out>) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200 200 uart.Receive(byte(nrf.UART0.RXD.Get())) (gdb) bt #0 (*machine.UART).handleInterrupt (arg1=..., uart=<optimized out>) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200 #1 UART0_IRQHandler () at /home/ayke/src/github.com/tinygo-org/tinygo/src/device/nrf/nrf51.go:176 #2 <signal handler called> [..etc] By now, the debugger sees an actual source location for UART0_IRQHandler (in the generated file) and an inlined function.
3 years ago
interrupt bool // go:interrupt
nobounds bool // go:nobounds
variadic bool // go:variadic (CGo only)
inline inlineType // go:inline
}
type inlineType int
// How much to inline.
const (
// Default behavior. The compiler decides for itself whether any given
// function will be inlined. Whether any function is inlined depends on the
// optimization level.
inlineDefault inlineType = iota
// Inline hint, just like the C inline keyword (signalled using
// //go:inline). The compiler will be more likely to inline this function,
// but it is not a guarantee.
inlineHint
// Don't inline, just like the GCC noinline attribute. Signalled using
// //go:noinline.
inlineNone
)
// Values for the allockind attribute. Source:
// https://github.com/llvm/llvm-project/blob/release/16.x/llvm/include/llvm/IR/Attributes.h#L49
const (
allocKindAlloc = 1 << iota
allocKindRealloc
allocKindFree
allocKindUninitialized
allocKindZeroed
allocKindAligned
)
// getFunction returns the LLVM function for the given *ssa.Function, creating
// it if needed. It can later be filled with compilerContext.createFunction().
func (c *compilerContext) getFunction(fn *ssa.Function) (llvm.Type, llvm.Value) {
info := c.getFunctionInfo(fn)
llvmFn := c.mod.NamedFunction(info.linkName)
if !llvmFn.IsNil() {
return llvmFn.GlobalValueType(), llvmFn
}
var retType llvm.Type
if fn.Signature.Results() == nil {
retType = c.ctx.VoidType()
} else if fn.Signature.Results().Len() == 1 {
retType = c.getLLVMType(fn.Signature.Results().At(0).Type())
} else {
results := make([]llvm.Type, 0, fn.Signature.Results().Len())
for i := 0; i < fn.Signature.Results().Len(); i++ {
results = append(results, c.getLLVMType(fn.Signature.Results().At(i).Type()))
}
retType = c.ctx.StructType(results, false)
}
var paramInfos []paramInfo
for _, param := range getParams(fn.Signature) {
paramType := c.getLLVMType(param.Type())
paramFragmentInfos := c.expandFormalParamType(paramType, param.Name(), param.Type())
paramInfos = append(paramInfos, paramFragmentInfos...)
}
// Add an extra parameter as the function context. This context is used in
// closures and bound methods, but should be optimized away when not used.
if !info.exported {
paramInfos = append(paramInfos, paramInfo{llvmType: c.dataPtrType, name: "context", elemSize: 0})
}
var paramTypes []llvm.Type
for _, info := range paramInfos {
paramTypes = append(paramTypes, info.llvmType)
}
fnType := llvm.FunctionType(retType, paramTypes, info.variadic)
llvmFn = llvm.AddFunction(c.mod, info.linkName, fnType)
if strings.HasPrefix(c.Triple, "wasm") {
// C functions without prototypes like this:
// void foo();
// are actually variadic functions. However, it appears that it has been
// decided in WebAssembly that such prototype-less functions are not
// allowed in WebAssembly.
// In C, this can only happen when there are zero parameters, hence this
// check here. For more information:
// https://reviews.llvm.org/D48443
// https://github.com/WebAssembly/tool-conventions/issues/16
if info.variadic && len(fn.Params) == 0 {
attr := c.ctx.CreateStringAttribute("no-prototype", "")
llvmFn.AddFunctionAttr(attr)
}
}
c.addStandardDeclaredAttributes(llvmFn)
dereferenceableOrNullKind := llvm.AttributeKindID("dereferenceable_or_null")
for i, info := range paramInfos {
if info.elemSize != 0 {
dereferenceableOrNull := c.ctx.CreateEnumAttribute(dereferenceableOrNullKind, info.elemSize)
llvmFn.AddAttributeAtIndex(i+1, dereferenceableOrNull)
}
}
// Set a number of function or parameter attributes, depending on the
// function. These functions are runtime functions that are known to have
// certain attributes that might not be inferred by the compiler.
switch info.linkName {
case "abort":
// On *nix systems, the "abort" functuion in libc is used to handle fatal panics.
// Mark it as noreturn so LLVM can optimize away code.
llvmFn.AddFunctionAttr(c.ctx.CreateEnumAttribute(llvm.AttributeKindID("noreturn"), 0))
case "runtime.alloc":
// Tell the optimizer that runtime.alloc is an allocator, meaning that it
// returns values that are never null and never alias to an existing value.
for _, attrName := range []string{"noalias", "nonnull"} {
llvmFn.AddAttributeAtIndex(0, c.ctx.CreateEnumAttribute(llvm.AttributeKindID(attrName), 0))
}
// Add attributes to signal to LLVM that this is an allocator function.
// This enables a number of optimizations.
llvmFn.AddFunctionAttr(c.ctx.CreateEnumAttribute(llvm.AttributeKindID("allockind"), allocKindAlloc|allocKindZeroed))
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("alloc-family", "runtime.alloc"))
// Use a special value to indicate the first parameter:
// > allocsize has two integer arguments, but because they're both 32 bits, we can
// > pack them into one 64-bit value, at the cost of making said value
// > nonsensical.
// >
// > In order to do this, we need to reserve one value of the second (optional)
// > allocsize argument to signify "not present."
llvmFn.AddFunctionAttr(c.ctx.CreateEnumAttribute(llvm.AttributeKindID("allocsize"), 0x0000_0000_ffff_ffff))
case "runtime.sliceAppend":
// Appending a slice will only read the to-be-appended slice, it won't
// be modified.
llvmFn.AddAttributeAtIndex(2, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("nocapture"), 0))
llvmFn.AddAttributeAtIndex(2, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("readonly"), 0))
case "runtime.sliceCopy":
// Copying a slice won't capture any of the parameters.
llvmFn.AddAttributeAtIndex(1, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("writeonly"), 0))
llvmFn.AddAttributeAtIndex(1, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("nocapture"), 0))
llvmFn.AddAttributeAtIndex(2, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("readonly"), 0))
llvmFn.AddAttributeAtIndex(2, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("nocapture"), 0))
case "runtime.trackPointer":
// This function is necessary for tracking pointers on the stack in a
// portable way (see gc_stack_portable.go). Indicate to the optimizer
// that the only thing we'll do is read the pointer.
llvmFn.AddAttributeAtIndex(1, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("nocapture"), 0))
llvmFn.AddAttributeAtIndex(1, c.ctx.CreateEnumAttribute(llvm.AttributeKindID("readonly"), 0))
case "__mulsi3", "__divmodsi4", "__udivmodsi4":
if strings.Split(c.Triple, "-")[0] == "avr" {
// These functions are compiler-rt/libgcc functions that are
// currently implemented in Go. Assembly versions should appear in
// LLVM 17 hopefully. Until then, they need to be made available to
// the linker and the best way to do that is llvm.compiler.used.
// I considered adding a pragma for this, but the LLVM language
// reference explicitly says that this feature should not be exposed
// to source languages:
// > This is a rare construct that should only be used in rare
// > circumstances, and should not be exposed to source languages.
llvmutil.AppendToGlobal(c.mod, "llvm.compiler.used", llvmFn)
}
}
// External/exported functions may not retain pointer values.
// https://golang.org/cmd/cgo/#hdr-Passing_pointers
if info.exported {
if c.archFamily() == "wasm32" && len(fn.Blocks) == 0 {
// We need to add the wasm-import-module and the wasm-import-name
// attributes.
if info.wasmModule != "" {
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("wasm-import-module", info.wasmModule))
}
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("wasm-import-name", info.wasmName))
}
nocaptureKind := llvm.AttributeKindID("nocapture")
nocapture := c.ctx.CreateEnumAttribute(nocaptureKind, 0)
for i, typ := range paramTypes {
if typ.TypeKind() == llvm.PointerTypeKind {
llvmFn.AddAttributeAtIndex(i+1, nocapture)
}
}
}
// Synthetic functions are functions that do not appear in the source code,
// they are artificially constructed. Usually they are wrapper functions
// that are not referenced anywhere except in a SSA call instruction so
// should be created right away.
// The exception is the package initializer, which does appear in the
// *ssa.Package members and so shouldn't be created here.
if fn.Synthetic != "" && fn.Synthetic != "package initializer" && fn.Synthetic != "generic function" {
irbuilder := c.ctx.NewBuilder()
b := newBuilder(c, irbuilder, fn)
b.createFunction()
irbuilder.Dispose()
llvmFn.SetLinkage(llvm.LinkOnceODRLinkage)
llvmFn.SetUnnamedAddr(true)
}
return fnType, llvmFn
}
// getFunctionInfo returns information about a function that is not directly
// present in *ssa.Function, such as the link name and whether it should be
// exported.
func (c *compilerContext) getFunctionInfo(f *ssa.Function) functionInfo {
if info, ok := c.functionInfos[f]; ok {
return info
}
info := functionInfo{
// Pick the default linkName.
linkName: f.RelString(nil),
}
// Check for //go: pragmas, which may change the link name (among others).
c.parsePragmas(&info, f)
c.functionInfos[f] = info
return info
}
// parsePragmas is used by getFunctionInfo to parse function pragmas such as
// //export or //go:noinline.
func (c *compilerContext) parsePragmas(info *functionInfo, f *ssa.Function) {
if f.Syntax() == nil {
return
}
if decl, ok := f.Syntax().(*ast.FuncDecl); ok && decl.Doc != nil {
for _, comment := range decl.Doc.List {
text := comment.Text
if strings.HasPrefix(text, "//export ") {
// Rewrite '//export' to '//go:export' for compatibility with
// gc.
text = "//go:" + text[2:]
}
if !strings.HasPrefix(text, "//go:") {
continue
}
parts := strings.Fields(text)
switch parts[0] {
case "//go:export":
if len(parts) != 2 {
continue
}
info.linkName = parts[1]
info.wasmName = info.linkName
info.exported = true
transform: refactor interrupt lowering Instead of doing everything in the interrupt lowering pass, generate some more code in gen-device to declare interrupt handler functions and do some work in the compiler so that interrupt lowering becomes a lot simpler. This has several benefits: - Overall code is smaller, in particular the interrupt lowering pass. - The code should be a bit less &#34;magical&#34; and instead a bit easier to read. In particular, instead of having a magic runtime.callInterruptHandler (that is fully written by the interrupt lowering pass), the runtime calls a generated function like device/sifive.InterruptHandler where this switch already exists in code. - Debug information is improved. This can be helpful during actual debugging but is also useful for other uses of DWARF debug information. For an example on debug information improvement, this is what a backtrace might look like before this commit: Breakpoint 1, 0x00000b46 in UART0_IRQHandler () (gdb) bt #0 0x00000b46 in UART0_IRQHandler () #1 &lt;signal handler called&gt; [..etc] Notice that the debugger doesn&#39;t see the source code location where it has stopped. After this commit, breaking at the same line might look like this: Breakpoint 1, (*machine.UART).handleInterrupt (arg1=..., uart=&lt;optimized out&gt;) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200 200 uart.Receive(byte(nrf.UART0.RXD.Get())) (gdb) bt #0 (*machine.UART).handleInterrupt (arg1=..., uart=&lt;optimized out&gt;) at /home/ayke/src/github.com/tinygo-org/tinygo/src/machine/machine_nrf.go:200 #1 UART0_IRQHandler () at /home/ayke/src/github.com/tinygo-org/tinygo/src/device/nrf/nrf51.go:176 #2 &lt;signal handler called&gt; [..etc] By now, the debugger sees an actual source location for UART0_IRQHandler (in the generated file) and an inlined function.
3 years ago
case "//go:interrupt":
if hasUnsafeImport(f.Pkg.Pkg) {
info.interrupt = true
}
case "//go:wasm-module":
// Alternative comment for setting the import module.
// This is deprecated, use //go:wasmimport instead.
if len(parts) != 2 {
continue
}
info.wasmModule = parts[1]
case "//go:wasmimport":
// Import a WebAssembly function, for example a WASI function.
// Original proposal: https://github.com/golang/go/issues/38248
// Allow globally: https://github.com/golang/go/issues/59149
if len(parts) != 3 {
continue
}
c.checkWasmImport(f, comment.Text)
info.exported = true
info.wasmModule = parts[1]
info.wasmName = parts[2]
case "//go:inline":
info.inline = inlineHint
case "//go:noinline":
info.inline = inlineNone
case "//go:linkname":
if len(parts) != 3 || parts[1] != f.Name() {
continue
}
// Only enable go:linkname when the package imports "unsafe".
// This is a slightly looser requirement than what gc uses: gc
// requires the file to import "unsafe", not the package as a
// whole.
if hasUnsafeImport(f.Pkg.Pkg) {
info.linkName = parts[2]
}
case "//go:section":
// Only enable go:section when the package imports "unsafe".
// go:section also implies go:noinline since inlining could
// move the code to a different section than that requested.
if len(parts) == 2 && hasUnsafeImport(f.Pkg.Pkg) {
info.section = parts[1]
info.inline = inlineNone
}
case "//go:nobounds":
// Skip bounds checking in this function. Useful for some
// runtime functions.
// This is somewhat dangerous and thus only imported in packages
// that import unsafe.
if hasUnsafeImport(f.Pkg.Pkg) {
info.nobounds = true
}
case "//go:variadic":
// The //go:variadic pragma is emitted by the CGo preprocessing
// pass for C variadic functions. This includes both explicit
// (with ...) and implicit (no parameters in signature)
// functions.
if strings.HasPrefix(f.Name(), "C.") {
// This prefix cannot naturally be created, it must have
// been created as a result of CGo preprocessing.
info.variadic = true
}
}
}
}
}
// Check whether this function cannot be used in //go:wasmimport. It will add an
// error if this is the case.
//
// The list of allowed types is based on this proposal:
// https://github.com/golang/go/issues/59149
func (c *compilerContext) checkWasmImport(f *ssa.Function, pragma string) {
if c.pkg.Path() == "runtime" || c.pkg.Path() == "syscall/js" {
// The runtime is a special case. Allow all kinds of parameters
// (importantly, including pointers).
return
}
if f.Blocks != nil {
// Defined functions cannot be exported.
c.addError(f.Pos(), fmt.Sprintf("can only use //go:wasmimport on declarations"))
return
}
if f.Signature.Results().Len() > 1 {
c.addError(f.Signature.Results().At(1).Pos(), fmt.Sprintf("%s: too many return values", pragma))
} else if f.Signature.Results().Len() == 1 {
result := f.Signature.Results().At(0)
if !isValidWasmType(result.Type(), true) {
c.addError(result.Pos(), fmt.Sprintf("%s: unsupported result type %s", pragma, result.Type().String()))
}
}
for _, param := range f.Params {
// Check whether the type is allowed.
// Only a very limited number of types can be mapped to WebAssembly.
if !isValidWasmType(param.Type(), false) {
c.addError(param.Pos(), fmt.Sprintf("%s: unsupported parameter type %s", pragma, param.Type().String()))
}
}
}
// Check whether the type maps directly to a WebAssembly type, according to:
// https://github.com/golang/go/issues/59149
func isValidWasmType(typ types.Type, isReturn bool) bool {
switch typ := typ.Underlying().(type) {
case *types.Basic:
switch typ.Kind() {
case types.Int32, types.Uint32, types.Int64, types.Uint64:
return true
case types.Float32, types.Float64:
return true
case types.UnsafePointer:
if !isReturn {
return true
}
}
}
return false
}
// getParams returns the function parameters, including the receiver at the
// start. This is an alternative to the Params member of *ssa.Function, which is
// not yet populated when the package has not yet been built.
func getParams(sig *types.Signature) []*types.Var {
params := []*types.Var{}
if sig.Recv() != nil {
params = append(params, sig.Recv())
}
for i := 0; i < sig.Params().Len(); i++ {
params = append(params, sig.Params().At(i))
}
return params
}
// addStandardDeclaredAttributes adds attributes that are set for any function,
// whether declared or defined.
func (c *compilerContext) addStandardDeclaredAttributes(llvmFn llvm.Value) {
if c.SizeLevel >= 1 {
// Set the "optsize" attribute to make slightly smaller binaries at the
// cost of minimal performance loss (-Os in Clang).
kind := llvm.AttributeKindID("optsize")
attr := c.ctx.CreateEnumAttribute(kind, 0)
llvmFn.AddFunctionAttr(attr)
}
if c.SizeLevel >= 2 {
// Set the "minsize" attribute to reduce code size even further,
// regardless of performance loss (-Oz in Clang).
kind := llvm.AttributeKindID("minsize")
attr := c.ctx.CreateEnumAttribute(kind, 0)
llvmFn.AddFunctionAttr(attr)
}
if c.CPU != "" {
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("target-cpu", c.CPU))
}
if c.Features != "" {
llvmFn.AddFunctionAttr(c.ctx.CreateStringAttribute("target-features", c.Features))
}
}
// addStandardDefinedAttributes adds the set of attributes that are added to
// every function defined by TinyGo (even thunks/wrappers), possibly depending
// on the architecture. It does not set attributes only set for declared
// functions, use addStandardDeclaredAttributes for this.
func (c *compilerContext) addStandardDefinedAttributes(llvmFn llvm.Value) {
// TinyGo does not currently raise exceptions, so set the 'nounwind' flag.
// This behavior matches Clang when compiling C source files.
// It reduces binary size on Linux a little bit on non-x86_64 targets by
// eliminating exception tables for these functions.
llvmFn.AddFunctionAttr(c.ctx.CreateEnumAttribute(llvm.AttributeKindID("nounwind"), 0))
if strings.Split(c.Triple, "-")[0] == "x86_64" {
// Required by the ABI.
// The uwtable has two possible values: sync (1) or async (2). We use
// sync because we currently don't use async unwind tables.
// For details, see: https://llvm.org/docs/LangRef.html#function-attributes
llvmFn.AddFunctionAttr(c.ctx.CreateEnumAttribute(llvm.AttributeKindID("uwtable"), 1))
}
}
// addStandardAttributes adds all attributes added to defined functions.
func (c *compilerContext) addStandardAttributes(llvmFn llvm.Value) {
c.addStandardDeclaredAttributes(llvmFn)
c.addStandardDefinedAttributes(llvmFn)
}
// globalInfo contains some information about a specific global. By default,
// linkName is equal to .RelString(nil) on a global and extern is false, but for
// some symbols this is different (due to //go:extern for example).
type globalInfo struct {
linkName string // go:extern
extern bool // go:extern
align int // go:align
section string // go:section
}
// loadASTComments loads comments on globals from the AST, for use later in the
// program. In particular, they are required for //go:extern pragmas on globals.
func (c *compilerContext) loadASTComments(pkg *loader.Package) {
for _, file := range pkg.Files {
for _, decl := range file.Decls {
switch decl := decl.(type) {
case *ast.GenDecl:
switch decl.Tok {
case token.VAR:
if len(decl.Specs) != 1 {
continue
}
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.ValueSpec: // decl.Tok == token.VAR
for _, name := range spec.Names {
id := pkg.Pkg.Path() + "." + name.Name
c.astComments[id] = decl.Doc
}
}
}
}
}
}
}
}
// getGlobal returns a LLVM IR global value for a Go SSA global. It is added to
// the LLVM IR if it has not been added already.
func (c *compilerContext) getGlobal(g *ssa.Global) llvm.Value {
info := c.getGlobalInfo(g)
llvmGlobal := c.mod.NamedGlobal(info.linkName)
if llvmGlobal.IsNil() {
typ := g.Type().(*types.Pointer).Elem()
llvmType := c.getLLVMType(typ)
llvmGlobal = llvm.AddGlobal(c.mod, llvmType, info.linkName)
// Set alignment from the //go:align comment.
alignment := c.targetData.ABITypeAlignment(llvmType)
if info.align > alignment {
alignment = info.align
}
if alignment <= 0 || alignment&(alignment-1) != 0 {
// Check for power-of-two (or 0).
// See: https://stackoverflow.com/a/108360
c.addError(g.Pos(), "global variable alignment must be a positive power of two")
} else {
// Set the alignment only when it is a power of two.
llvmGlobal.SetAlignment(alignment)
}
if c.Debug && !info.extern {
// Add debug info.
pos := c.program.Fset.Position(g.Pos())
diglobal := c.dibuilder.CreateGlobalVariableExpression(c.difiles[pos.Filename], llvm.DIGlobalVariableExpression{
Name: g.RelString(nil),
LinkageName: info.linkName,
File: c.getDIFile(pos.Filename),
Line: pos.Line,
Type: c.getDIType(typ),
LocalToUnit: false,
Expr: c.dibuilder.CreateExpression(nil),
AlignInBits: uint32(alignment) * 8,
})
llvmGlobal.AddMetadata(0, diglobal)
}
}
return llvmGlobal
}
// getGlobalInfo returns some information about a specific global.
func (c *compilerContext) getGlobalInfo(g *ssa.Global) globalInfo {
info := globalInfo{
// Pick the default linkName.
linkName: g.RelString(nil),
}
// Check for //go: pragmas, which may change the link name (among others).
doc := c.astComments[info.linkName]
if doc != nil {
info.parsePragmas(doc)
}
return info
}
// Parse //go: pragma comments from the source. In particular, it parses the
// //go:extern pragma on globals.
func (info *globalInfo) parsePragmas(doc *ast.CommentGroup) {
for _, comment := range doc.List {
if !strings.HasPrefix(comment.Text, "//go:") {
continue
}
parts := strings.Fields(comment.Text)
switch parts[0] {
case "//go:extern":
info.extern = true
if len(parts) == 2 {
info.linkName = parts[1]
}
case "//go:align":
align, err := strconv.Atoi(parts[1])
if err == nil {
info.align = align
}
case "//go:section":
if len(parts) == 2 {
info.section = parts[1]
}
}
}
}
// Get all methods of a type.
func getAllMethods(prog *ssa.Program, typ types.Type) []*types.Selection {
ms := prog.MethodSets.MethodSet(typ)
methods := make([]*types.Selection, ms.Len())
for i := 0; i < ms.Len(); i++ {
methods[i] = ms.At(i)
}
return methods
}
// Return true if this package imports "unsafe", false otherwise.
func hasUnsafeImport(pkg *types.Package) bool {
for _, imp := range pkg.Imports() {
if imp == types.Unsafe {
return true
}
}
return false
}