You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

448 lines
16 KiB

package compiler
// This file implements the 'defer' keyword in Go.
// Defer statements are implemented by transforming the function in the
// following way:
// * Creating an alloca in the entry block that contains a pointer (initially
// null) to the linked list of defer frames.
// * Every time a defer statement is executed, a new defer frame is created
// using alloca with a pointer to the previous defer frame, and the head
// pointer in the entry block is replaced with a pointer to this defer
// frame.
// * On return, runtime.rundefers is called which calls all deferred functions
// from the head of the linked list until it has gone through all defer
// frames.
import (
"go/types"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// deferInitFunc sets up this function for future deferred calls. It must be
// called from within the entry block when this function contains deferred
// calls.
func (b *builder) deferInitFunc() {
// Some setup.
b.deferFuncs = make(map[*ssa.Function]int)
b.deferInvokeFuncs = make(map[string]int)
b.deferClosureFuncs = make(map[*ssa.Function]int)
b.deferExprFuncs = make(map[ssa.Value]int)
b.deferBuiltinFuncs = make(map[ssa.Value]deferBuiltin)
// Create defer list pointer.
deferType := llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)
b.deferPtr = b.CreateAlloca(deferType, "deferPtr")
b.CreateStore(llvm.ConstPointerNull(deferType), b.deferPtr)
}
// isInLoop checks if there is a path from a basic block to itself.
func isInLoop(start *ssa.BasicBlock) bool {
// Use a breadth-first search to scan backwards through the block graph.
queue := []*ssa.BasicBlock{start}
checked := map[*ssa.BasicBlock]struct{}{}
for len(queue) > 0 {
// pop a block off of the queue
block := queue[len(queue)-1]
queue = queue[:len(queue)-1]
// Search through predecessors.
// Searching backwards means that this is pretty fast when the block is close to the start of the function.
// Defers are often placed near the start of the function.
for _, pred := range block.Preds {
if pred == start {
// cycle found
return true
}
if _, ok := checked[pred]; ok {
// block already checked
continue
}
// add to queue and checked map
queue = append(queue, pred)
checked[pred] = struct{}{}
}
}
return false
}
// createDefer emits a single defer instruction, to be run when this function
// returns.
func (b *builder) createDefer(instr *ssa.Defer) {
// The pointer to the previous defer struct, which we will replace to
// make a linked list.
next := b.CreateLoad(b.deferPtr, "defer.next")
var values []llvm.Value
valueTypes := []llvm.Type{b.uintptrType, next.Type()}
if instr.Call.IsInvoke() {
// Method call on an interface.
// Get callback type number.
methodName := instr.Call.Method.FullName()
if _, ok := b.deferInvokeFuncs[methodName]; !ok {
b.deferInvokeFuncs[methodName] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferInvokeFuncs[methodName]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by the call parameters).
itf := b.getValue(instr.Call.Value) // interface
typecode := b.CreateExtractValue(itf, 0, "invoke.func.typecode")
receiverValue := b.CreateExtractValue(itf, 1, "invoke.func.receiver")
values = []llvm.Value{callback, next, typecode, receiverValue}
valueTypes = append(valueTypes, b.uintptrType, b.i8ptrType)
for _, arg := range instr.Call.Args {
val := b.getValue(arg)
values = append(values, val)
valueTypes = append(valueTypes, val.Type())
}
} else if callee, ok := instr.Call.Value.(*ssa.Function); ok {
// Regular function call.
if _, ok := b.deferFuncs[callee]; !ok {
b.deferFuncs[callee] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, callee)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferFuncs[callee]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
} else if makeClosure, ok := instr.Call.Value.(*ssa.MakeClosure); ok {
// Immediately applied function literal with free variables.
// Extract the context from the closure. We won't need the function
// pointer.
// TODO: ignore this closure entirely and put pointers to the free
// variables directly in the defer struct, avoiding a memory allocation.
closure := b.getValue(instr.Call.Value)
context := b.CreateExtractValue(closure, 0, "")
// Get the callback number.
fn := makeClosure.Fn.(*ssa.Function)
if _, ok := b.deferClosureFuncs[fn]; !ok {
b.deferClosureFuncs[fn] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, makeClosure)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferClosureFuncs[fn]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
values = append(values, context)
valueTypes = append(valueTypes, context.Type())
} else if builtin, ok := instr.Call.Value.(*ssa.Builtin); ok {
var argTypes []types.Type
var argValues []llvm.Value
for _, arg := range instr.Call.Args {
argTypes = append(argTypes, arg.Type())
argValues = append(argValues, b.getValue(arg))
}
if _, ok := b.deferBuiltinFuncs[instr.Call.Value]; !ok {
b.deferBuiltinFuncs[instr.Call.Value] = deferBuiltin{
callName: builtin.Name(),
pos: builtin.Pos(),
argTypes: argTypes,
callback: len(b.allDeferFuncs),
}
b.allDeferFuncs = append(b.allDeferFuncs, instr.Call.Value)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferBuiltinFuncs[instr.Call.Value].callback), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range argValues {
values = append(values, param)
valueTypes = append(valueTypes, param.Type())
}
} else {
funcValue := b.getValue(instr.Call.Value)
if _, ok := b.deferExprFuncs[instr.Call.Value]; !ok {
b.deferExprFuncs[instr.Call.Value] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferExprFuncs[instr.Call.Value]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next, funcValue}
valueTypes = append(valueTypes, funcValue.Type())
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param)
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
}
// Make a struct out of the collected values to put in the defer frame.
deferFrameType := b.ctx.StructType(valueTypes, false)
deferFrame := llvm.ConstNull(deferFrameType)
for i, value := range values {
deferFrame = b.CreateInsertValue(deferFrame, value, i, "")
}
// Put this struct in an allocation.
var alloca llvm.Value
if !isInLoop(instr.Block()) {
// This can safely use a stack allocation.
alloca = llvmutil.CreateEntryBlockAlloca(b.Builder, deferFrameType, "defer.alloca")
} else {
// This may be hit a variable number of times, so use a heap allocation.
size := b.targetData.TypeAllocSize(deferFrameType)
sizeValue := llvm.ConstInt(b.uintptrType, size, false)
nilPtr := llvm.ConstNull(b.i8ptrType)
allocCall := b.createRuntimeCall("alloc", []llvm.Value{sizeValue, nilPtr}, "defer.alloc.call")
alloca = b.CreateBitCast(allocCall, llvm.PointerType(deferFrameType, 0), "defer.alloc")
}
if b.NeedsStackObjects {
b.trackPointer(alloca)
}
b.CreateStore(deferFrame, alloca)
// Push it on top of the linked list by replacing deferPtr.
allocaCast := b.CreateBitCast(alloca, next.Type(), "defer.alloca.cast")
b.CreateStore(allocaCast, b.deferPtr)
}
// createRunDefers emits code to run all deferred functions.
func (b *builder) createRunDefers() {
// Add a loop like the following:
// for stack != nil {
// _stack := stack
// stack = stack.next
// switch _stack.callback {
// case 0:
// // run first deferred call
// case 1:
// // run second deferred call
// // etc.
// default:
// unreachable
// }
// }
// Create loop.
loophead := b.ctx.AddBasicBlock(b.llvmFn, "rundefers.loophead")
loop := b.ctx.AddBasicBlock(b.llvmFn, "rundefers.loop")
unreachable := b.ctx.AddBasicBlock(b.llvmFn, "rundefers.default")
end := b.ctx.AddBasicBlock(b.llvmFn, "rundefers.end")
b.CreateBr(loophead)
// Create loop head:
// for stack != nil {
b.SetInsertPointAtEnd(loophead)
deferData := b.CreateLoad(b.deferPtr, "")
stackIsNil := b.CreateICmp(llvm.IntEQ, deferData, llvm.ConstPointerNull(deferData.Type()), "stackIsNil")
b.CreateCondBr(stackIsNil, end, loop)
// Create loop body:
// _stack := stack
// stack = stack.next
// switch stack.callback {
b.SetInsertPointAtEnd(loop)
nextStackGEP := b.CreateInBoundsGEP(deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 1, false), // .next field
}, "stack.next.gep")
nextStack := b.CreateLoad(nextStackGEP, "stack.next")
b.CreateStore(nextStack, b.deferPtr)
gep := b.CreateInBoundsGEP(deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 0, false), // .callback field
}, "callback.gep")
callback := b.CreateLoad(gep, "callback")
sw := b.CreateSwitch(callback, unreachable, len(b.allDeferFuncs))
for i, callback := range b.allDeferFuncs {
// Create switch case, for example:
// case 0:
// // run first deferred call
block := b.ctx.AddBasicBlock(b.llvmFn, "rundefers.callback")
sw.AddCase(llvm.ConstInt(b.uintptrType, uint64(i), false), block)
b.SetInsertPointAtEnd(block)
switch callback := callback.(type) {
case *ssa.CallCommon:
// Call on an value or interface value.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
if !callback.IsInvoke() {
//Expect funcValue to be passed through the defer frame.
valueTypes = append(valueTypes, b.getFuncType(callback.Signature()))
} else {
//Expect typecode
valueTypes = append(valueTypes, b.uintptrType, b.i8ptrType)
}
for _, arg := range callback.Args {
valueTypes = append(valueTypes, b.getLLVMType(arg.Type()))
}
deferFrameType := b.ctx.StructType(valueTypes, false)
deferFramePtr := b.CreateBitCast(deferData, llvm.PointerType(deferFrameType, 0), "deferFrame")
// Extract the params from the struct (including receiver).
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferFramePtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
var fnPtr llvm.Value
if !callback.IsInvoke() {
// Isolate the func value.
funcValue := forwardParams[0]
forwardParams = forwardParams[1:]
//Get function pointer and context
fp, context := b.decodeFuncValue(funcValue, callback.Signature())
fnPtr = fp
//Pass context
forwardParams = append(forwardParams, context)
} else {
// Move typecode from the start to the end of the list of
// parameters.
forwardParams = append(forwardParams[1:], forwardParams[0])
fnPtr = b.getInvokeFunction(callback)
// Add the context parameter. An interface call cannot also be a
// closure but we have to supply the parameter anyway for platforms
// with a strict calling convention.
forwardParams = append(forwardParams, llvm.Undef(b.i8ptrType))
}
b.createCall(fnPtr, forwardParams, "")
case *ssa.Function:
// Direct call.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
for _, param := range getParams(callback.Signature) {
valueTypes = append(valueTypes, b.getLLVMType(param.Type()))
}
deferFrameType := b.ctx.StructType(valueTypes, false)
deferFramePtr := b.CreateBitCast(deferData, llvm.PointerType(deferFrameType, 0), "deferFrame")
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := range getParams(callback.Signature) {
gep := b.CreateInBoundsGEP(deferFramePtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Plain TinyGo functions add some extra parameters to implement async functionality and function recievers.
// These parameters should not be supplied when calling into an external C/ASM function.
if !b.getFunctionInfo(callback).exported {
// Add the context parameter. We know it is ignored by the receiving
// function, but we have to pass one anyway.
forwardParams = append(forwardParams, llvm.Undef(b.i8ptrType))
}
// Call real function.
b.createCall(b.getFunction(callback), forwardParams, "")
case *ssa.MakeClosure:
// Get the real defer struct type and cast to it.
fn := callback.Fn.(*ssa.Function)
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
params := fn.Signature.Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
valueTypes = append(valueTypes, b.i8ptrType) // closure
deferFrameType := b.ctx.StructType(valueTypes, false)
deferFramePtr := b.CreateBitCast(deferData, llvm.PointerType(deferFrameType, 0), "deferFrame")
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferFramePtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "")
forwardParam := b.CreateLoad(gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Call deferred function.
b.createCall(b.getFunction(fn), forwardParams, "")
case *ssa.Builtin:
db := b.deferBuiltinFuncs[callback]
//Get parameter types
valueTypes := []llvm.Type{b.uintptrType, llvm.PointerType(b.getLLVMRuntimeType("_defer"), 0)}
//Get signature from call results
params := callback.Type().Underlying().(*types.Signature).Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
deferFrameType := b.ctx.StructType(valueTypes, false)
deferFramePtr := b.CreateBitCast(deferData, llvm.PointerType(deferFrameType, 0), "deferFrame")
// Extract the params from the struct.
var argValues []llvm.Value
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 0; i < params.Len(); i++ {
gep := b.CreateInBoundsGEP(deferFramePtr, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(gep, "param")
argValues = append(argValues, forwardParam)
}
_, err := b.createBuiltin(db.argTypes, argValues, db.callName, db.pos)
if err != nil {
b.diagnostics = append(b.diagnostics, err)
}
default:
panic("unknown deferred function type")
}
// Branch back to the start of the loop.
b.CreateBr(loophead)
}
// Create default unreachable block:
// default:
// unreachable
// }
b.SetInsertPointAtEnd(unreachable)
b.CreateUnreachable()
// End of loop.
b.SetInsertPointAtEnd(end)
}