You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

316 lines
10 KiB

// Package interp is a partial evaluator of code run at package init time. See
// the README in this package for details.
package interp
import (
"fmt"
"os"
"strings"
"time"
"tinygo.org/x/go-llvm"
)
// Enable extra checks, which should be disabled by default.
// This may help track down bugs by adding a few more sanity checks.
const checks = true
// runner contains all state related to one interp run.
type runner struct {
mod llvm.Module
targetData llvm.TargetData
builder llvm.Builder
pointerSize uint32 // cached pointer size from the TargetData
dataPtrType llvm.Type // often used type so created in advance
uintptrType llvm.Type // equivalent to uintptr in Go
maxAlign int // maximum alignment of an object, alignment of runtime.alloc() result
debug bool // log debug messages
pkgName string // package name of the currently executing package
functionCache map[llvm.Value]*function // cache of compiled functions
objects []object // slice of objects in memory
globals map[llvm.Value]int // map from global to index in objects slice
start time.Time
timeout time.Duration
callsExecuted uint64
}
func newRunner(mod llvm.Module, timeout time.Duration, debug bool) *runner {
r := runner{
mod: mod,
targetData: llvm.NewTargetData(mod.DataLayout()),
debug: debug,
functionCache: make(map[llvm.Value]*function),
objects: []object{{}},
globals: make(map[llvm.Value]int),
start: time.Now(),
timeout: timeout,
}
r.pointerSize = uint32(r.targetData.PointerSize())
r.dataPtrType = llvm.PointerType(mod.Context().Int8Type(), 0)
r.uintptrType = mod.Context().IntType(r.targetData.PointerSize() * 8)
r.maxAlign = r.targetData.PrefTypeAlignment(r.dataPtrType) // assume pointers are maximally aligned (this is not always the case)
return &r
}
// Dispose deallocates all alloated LLVM resources.
func (r *runner) dispose() {
r.targetData.Dispose()
r.targetData = llvm.TargetData{}
}
// Run evaluates runtime.initAll function as much as possible at compile time.
// Set debug to true if it should print output while running.
func Run(mod llvm.Module, timeout time.Duration, debug bool) error {
r := newRunner(mod, timeout, debug)
defer r.dispose()
initAll := mod.NamedFunction("runtime.initAll")
bb := initAll.EntryBasicBlock()
// Create a builder, to insert instructions that could not be evaluated at
// compile time.
r.builder = mod.Context().NewBuilder()
defer r.builder.Dispose()
// Create a dummy alloca in the entry block that we can set the insert point
// to. This is necessary because otherwise we might be removing the
// instruction (init call) that we are removing after successful
// interpretation.
r.builder.SetInsertPointBefore(bb.FirstInstruction())
dummy := r.builder.CreateAlloca(r.mod.Context().Int8Type(), "dummy")
r.builder.SetInsertPointBefore(dummy)
defer dummy.EraseFromParentAsInstruction()
// Get a list if init calls. A runtime.initAll might look something like this:
// func initAll() {
// unsafe.init()
// machine.init()
// runtime.init()
// }
// This function gets a list of these call instructions.
var initCalls []llvm.Value
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
if inst == dummy {
continue
}
if !inst.IsAReturnInst().IsNil() {
break // ret void
}
if inst.IsACallInst().IsNil() || inst.CalledValue().IsAFunction().IsNil() {
return errorAt(inst, "interp: expected all instructions in "+initAll.Name()+" to be direct calls")
}
initCalls = append(initCalls, inst)
}
// Run initializers for each package. Once the package initializer is
// finished, the call to the package initializer can be removed.
for _, call := range initCalls {
initName := call.CalledValue().Name()
if !strings.HasSuffix(initName, ".init") {
return errorAt(call, "interp: expected all instructions in "+initAll.Name()+" to be *.init() calls")
}
r.pkgName = initName[:len(initName)-len(".init")]
fn := call.CalledValue()
if r.debug {
fmt.Fprintln(os.Stderr, "call:", fn.Name())
}
_, mem, callErr := r.run(r.getFunction(fn), nil, nil, " ")
call.EraseFromParentAsInstruction()
if callErr != nil {
if isRecoverableError(callErr.Err) {
if r.debug {
fmt.Fprintln(os.Stderr, "not interpreting", r.pkgName, "because of error:", callErr.Error())
}
// Remove instructions that were created as part of interpreting
// the package.
mem.revert()
// Create a call to the package initializer (which was
// previously deleted).
i8undef := llvm.Undef(r.dataPtrType)
r.builder.CreateCall(fn.GlobalValueType(), fn, []llvm.Value{i8undef}, "")
// Make sure that any globals touched by the package
// initializer, won't be accessed by later package initializers.
err := r.markExternalLoad(fn)
if err != nil {
return fmt.Errorf("failed to interpret package %s: %w", r.pkgName, err)
}
continue
}
return callErr
}
for index, obj := range mem.objects {
r.objects[index] = obj
}
}
r.pkgName = ""
// Update all global variables in the LLVM module.
mem := memoryView{r: r}
for i, obj := range r.objects {
if obj.llvmGlobal.IsNil() {
continue
}
if obj.buffer == nil {
continue
}
if obj.constant {
continue // constant buffers can't have been modified
}
initializer, err := obj.buffer.toLLVMValue(obj.llvmGlobal.GlobalValueType(), &mem)
if err == errInvalidPtrToIntSize {
// This can happen when a previous interp run did not have the
// correct LLVM type for a global and made something up. In that
// case, some fields could be written out as a series of (null)
// bytes even though they actually contain a pointer value.
// As a fallback, use asRawValue to get something of the correct
// memory layout.
initializer, err := obj.buffer.asRawValue(r).rawLLVMValue(&mem)
if err != nil {
return err
}
initializerType := initializer.Type()
newGlobal := llvm.AddGlobal(mod, initializerType, obj.llvmGlobal.Name()+".tmp")
newGlobal.SetInitializer(initializer)
newGlobal.SetLinkage(obj.llvmGlobal.Linkage())
newGlobal.SetAlignment(obj.llvmGlobal.Alignment())
// TODO: copy debug info, unnamed_addr, ...
obj.llvmGlobal.ReplaceAllUsesWith(newGlobal)
name := obj.llvmGlobal.Name()
obj.llvmGlobal.EraseFromParentAsGlobal()
newGlobal.SetName(name)
// Update interp-internal references.
delete(r.globals, obj.llvmGlobal)
obj.llvmGlobal = newGlobal
r.globals[newGlobal] = i
r.objects[i] = obj
continue
}
if err != nil {
return err
}
if checks && initializer.Type() != obj.llvmGlobal.GlobalValueType() {
panic("initializer type mismatch")
}
obj.llvmGlobal.SetInitializer(initializer)
}
return nil
}
// RunFunc evaluates a single package initializer at compile time.
// Set debug to true if it should print output while running.
func RunFunc(fn llvm.Value, timeout time.Duration, debug bool) error {
// Create and initialize *runner object.
mod := fn.GlobalParent()
r := newRunner(mod, timeout, debug)
defer r.dispose()
initName := fn.Name()
if !strings.HasSuffix(initName, ".init") {
return errorAt(fn, "interp: unexpected function name (expected *.init)")
}
r.pkgName = initName[:len(initName)-len(".init")]
// Create new function with the interp result.
newFn := llvm.AddFunction(mod, fn.Name()+".tmp", fn.GlobalValueType())
newFn.SetLinkage(fn.Linkage())
newFn.SetVisibility(fn.Visibility())
entry := mod.Context().AddBasicBlock(newFn, "entry")
// Create a builder, to insert instructions that could not be evaluated at
// compile time.
r.builder = mod.Context().NewBuilder()
defer r.builder.Dispose()
r.builder.SetInsertPointAtEnd(entry)
// Copy debug information.
subprogram := fn.Subprogram()
if !subprogram.IsNil() {
newFn.SetSubprogram(subprogram)
r.builder.SetCurrentDebugLocation(subprogram.SubprogramLine(), 0, subprogram, llvm.Metadata{})
}
// Run the initializer, filling the .init.tmp function.
if r.debug {
fmt.Fprintln(os.Stderr, "interp:", fn.Name())
}
_, pkgMem, callErr := r.run(r.getFunction(fn), nil, nil, " ")
if callErr != nil {
if isRecoverableError(callErr.Err) {
// Could not finish, but could recover from it.
if r.debug {
fmt.Fprintln(os.Stderr, "not interpreting", r.pkgName, "because of error:", callErr.Error())
}
newFn.EraseFromParentAsFunction()
return nil
}
return callErr
}
for index, obj := range pkgMem.objects {
r.objects[index] = obj
}
// Update globals with values determined while running the initializer above.
mem := memoryView{r: r}
for _, obj := range r.objects {
if obj.llvmGlobal.IsNil() {
continue
}
if obj.buffer == nil {
continue
}
if obj.constant {
continue // constant, so can't have been modified
}
initializer, err := obj.buffer.toLLVMValue(obj.llvmGlobal.GlobalValueType(), &mem)
if err != nil {
return err
}
if checks && initializer.Type() != obj.llvmGlobal.GlobalValueType() {
panic("initializer type mismatch")
}
obj.llvmGlobal.SetInitializer(initializer)
}
// Finalize: remove the old init function and replace it with the new
// (.init.tmp) function.
r.builder.CreateRetVoid()
fnName := fn.Name()
fn.ReplaceAllUsesWith(newFn)
fn.EraseFromParentAsFunction()
newFn.SetName(fnName)
return nil
}
// getFunction returns the compiled version of the given LLVM function. It
// compiles the function if necessary and caches the result.
func (r *runner) getFunction(llvmFn llvm.Value) *function {
if fn, ok := r.functionCache[llvmFn]; ok {
return fn
}
fn := r.compileFunction(llvmFn)
r.functionCache[llvmFn] = fn
return fn
}
// markExternalLoad marks the given llvmValue as being loaded externally. This
// is primarily used to mark package initializers that could not be run at
// compile time. As an example, a package initialize might store to a global
// variable. Another package initializer might read from the same global
// variable. By marking this function as being run at runtime, that load
// instruction will need to be run at runtime instead of at compile time.
func (r *runner) markExternalLoad(llvmValue llvm.Value) error {
mem := memoryView{r: r}
err := mem.markExternalLoad(llvmValue)
if err != nil {
return err
}
for index, obj := range mem.objects {
if obj.marked > r.objects[index].marked {
r.objects[index].marked = obj.marked
}
}
return nil
}