You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

344 lines
9.1 KiB

builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
package stacksize
// This file implements parsing DWARF call frame information and interpreting
// the CFI bytecode, or enough of it for most practical code.
import (
"bytes"
"debug/elf"
"encoding/binary"
"fmt"
"io"
)
// dwarfCIE represents one DWARF Call Frame Information structure.
type dwarfCIE struct {
bytecode []byte
codeAlignmentFactor uint64
}
// parseFrames parses all call frame information from a .debug_frame section and
// provides the passed in symbols map with frame size information.
func parseFrames(f *elf.File, data []byte, symbols map[uint64]*CallNode) error {
if f.Class != elf.ELFCLASS32 {
// TODO: ELF64
return fmt.Errorf("expected ELF32")
}
cies := make(map[uint32]*dwarfCIE)
// Read each entity.
r := bytes.NewBuffer(data)
for {
start := len(data) - r.Len()
var length uint32
err := binary.Read(r, binary.LittleEndian, &length)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
var cie uint32
err = binary.Read(r, binary.LittleEndian, &cie)
if err != nil {
return err
}
if cie == 0xffffffff {
// This is a CIE.
var fields struct {
Version uint8
Augmentation uint8
AddressSize uint8
SegmentSize uint8
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if fields.Version != 4 {
return fmt.Errorf("unimplemented: .debug_frame version %d", fields.Version)
}
if fields.Augmentation != 0 {
return fmt.Errorf("unimplemented: .debug_frame with augmentation")
}
if fields.SegmentSize != 0 {
return fmt.Errorf("unimplemented: .debug_frame with segment size")
}
codeAlignmentFactor, err := readULEB128(r)
if err != nil {
return err
}
_, err = readSLEB128(r) // data alignment factor
if err != nil {
return err
}
_, err = readULEB128(r) // return address register
if err != nil {
return err
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
cies[uint32(start)] = &dwarfCIE{
codeAlignmentFactor: codeAlignmentFactor,
bytecode: bytecode,
}
} else {
// This is a FDE.
var fields struct {
InitialLocation uint32
AddressRange uint32
}
err = binary.Read(r, binary.LittleEndian, &fields)
if err != nil {
return err
}
if _, ok := cies[cie]; !ok {
return fmt.Errorf("could not find CIE 0x%x in .debug_frame section", cie)
}
frame := frameInfo{
cie: cies[cie],
start: uint64(fields.InitialLocation),
loc: uint64(fields.InitialLocation),
length: uint64(fields.AddressRange),
}
rest := (start + int(length) + 4) - (len(data) - r.Len())
bytecode := r.Next(rest)
if frame.start == 0 {
// Not sure where these come from but they don't seem to be
// important.
continue
}
_, err = frame.exec(frame.cie.bytecode)
if err != nil {
return err
}
entries, err := frame.exec(bytecode)
if err != nil {
return err
}
var maxFrameSize uint64
for _, entry := range entries {
switch f.Machine {
case elf.EM_ARM:
if entry.cfaRegister != 13 { // r13 or sp
// something other than a stack pointer (on ARM)
return fmt.Errorf("%08x..%08x: unknown CFA register number %d", frame.start, frame.start+frame.length, entry.cfaRegister)
}
default:
return fmt.Errorf("unknown architecture: %s", f.Machine)
}
if entry.cfaOffset > maxFrameSize {
maxFrameSize = entry.cfaOffset
}
}
node := symbols[frame.start]
if node.Size != frame.length {
return fmt.Errorf("%s: symtab gives symbol length %d while DWARF gives symbol length %d", node, node.Size, frame.length)
}
node.FrameSize = maxFrameSize
node.FrameSizeType = Bounded
if debugPrint {
fmt.Printf("%08x..%08x: frame size %4d %s\n", frame.start, frame.start+frame.length, maxFrameSize, node)
}
}
}
}
// frameInfo contains the state of executing call frame information bytecode.
type frameInfo struct {
cie *dwarfCIE
start uint64
loc uint64
length uint64
cfaRegister uint64
cfaOffset uint64
}
// frameInfoLine represents one line in the frame table (.debug_frame) at one
// point in the execution of the bytecode.
type frameInfoLine struct {
loc uint64
cfaRegister uint64
cfaOffset uint64
}
func (fi *frameInfo) newLine() frameInfoLine {
return frameInfoLine{
loc: fi.loc,
cfaRegister: fi.cfaRegister,
cfaOffset: fi.cfaOffset,
}
}
// exec executes the given bytecode in the CFI. Most CFI bytecode is actually
// very simple and provides a way to determine the maximum call frame size.
//
// The frame size often changes multiple times in a function, for example the
// frame size may be adjusted in the prologue and epilogue. Each frameInfoLine
// may contain such a change.
func (fi *frameInfo) exec(bytecode []byte) ([]frameInfoLine, error) {
var entries []frameInfoLine
r := bytes.NewBuffer(bytecode)
for {
op, err := r.ReadByte()
if err != nil {
if err == io.EOF {
entries = append(entries, fi.newLine())
return entries, nil
}
return nil, err
}
// For details on the various opcodes, see:
// http://dwarfstd.org/doc/DWARF5.pdf (page 239)
builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
highBits := op >> 6 // high order 2 bits
lowBits := op & 0x1f
switch highBits {
case 1: // DW_CFA_advance_loc
fi.loc += uint64(lowBits) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 2: // DW_CFA_offset
// This indicates where a register is saved on the stack in the
// prologue. We can ignore that for our purposes.
_, err := readULEB128(r)
if err != nil {
return nil, err
}
case 3: // DW_CFA_restore
// Restore a register. Used after an outlined function call.
// It should be possible to ignore this.
// TODO: check that this is not the stack pointer.
builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
case 0:
switch lowBits {
case 0: // DW_CFA_nop
// no operation
case 0x02: // DW_CFA_advance_loc1
// Very similar to DW_CFA_advance_loc but allows for a slightly
// larger range.
offset, err := r.ReadByte()
if err != nil {
return nil, err
}
fi.loc += uint64(offset) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 0x03: // DW_CFA_advance_loc2
var offset uint16
err := binary.Read(r, binary.LittleEndian, &offset)
if err != nil {
return nil, err
}
fi.loc += uint64(offset) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 0x04: // DW_CFA_advance_loc4
var offset uint32
err := binary.Read(r, binary.LittleEndian, &offset)
if err != nil {
return nil, err
}
fi.loc += uint64(offset) * fi.cie.codeAlignmentFactor
entries = append(entries, fi.newLine())
case 0x05: // DW_CFA_offset_extended
// Semantics are the same as DW_CFA_offset, but the encoding is
// different. Ignore it just like DW_CFA_offset.
_, err := readULEB128(r) // ULEB128 register
if err != nil {
return nil, err
}
_, err = readULEB128(r) // ULEB128 offset
if err != nil {
return nil, err
}
case 0x07: // DW_CFA_undefined
// Marks a single register as undefined. This is used to stop
// unwinding in tinygo_startTask using:
// .cfi_undefined lr
// Ignore this directive.
_, err := readULEB128(r)
if err != nil {
return nil, err
}
case 0x09: // DW_CFA_register
// Copies a register. Emitted by the machine outliner, for example.
// It should be possible to ignore this.
// TODO: check that the stack pointer is not affected.
_, err := readULEB128(r)
if err != nil {
return nil, err
}
_, err = readULEB128(r)
if err != nil {
return nil, err
}
builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
case 0x0c: // DW_CFA_def_cfa
register, err := readULEB128(r)
if err != nil {
return nil, err
}
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaRegister = register
fi.cfaOffset = offset
case 0x0e: // DW_CFA_def_cfa_offset
offset, err := readULEB128(r)
if err != nil {
return nil, err
}
fi.cfaOffset = offset
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x (for address 0x%x)", op, fi.loc)
builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
}
default:
return nil, fmt.Errorf("could not decode .debug_frame bytecode op 0x%x (for address 0x%x)", op, fi.loc)
builder: try to determine stack size information at compile time For now, this is just an extra flag that can be used to print stack frame information, but this is intended to provide a way to determine stack sizes for goroutines at compile time in many cases. Stack sizes are often somewhere around 350 bytes so are in fact not all that big usually. Once this can be determined at compile time in many cases, it is possible to use this information when available and as a result increase the fallback stack size if the size cannot be determined at compile time. This should reduce stack overflows while at the same time reducing RAM consumption in many cases. Interesting output for testdata/channel.go: function stack usage (in bytes) Reset_Handler 332 .Lcommand-line-arguments.fastreceiver 220 .Lcommand-line-arguments.fastsender 192 .Lcommand-line-arguments.iterator 192 .Lcommand-line-arguments.main$1 184 .Lcommand-line-arguments.main$2 200 .Lcommand-line-arguments.main$3 200 .Lcommand-line-arguments.main$4 328 .Lcommand-line-arguments.receive 176 .Lcommand-line-arguments.selectDeadlock 72 .Lcommand-line-arguments.selectNoOp 72 .Lcommand-line-arguments.send 184 .Lcommand-line-arguments.sendComplex 192 .Lcommand-line-arguments.sender 192 .Lruntime.run$1 548 This shows that the stack size (if these numbers are correct) can in fact be determined automatically in many cases, especially for small goroutines. One of the great things about Go is lightweight goroutines, and reducing stack sizes is very important to make goroutines lightweight on microcontrollers.
4 years ago
}
}
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_unsigned_integer
func readULEB128(r *bytes.Buffer) (result uint64, err error) {
// TODO: guard against overflowing 64-bit integers.
var shift uint8
for {
b, err := r.ReadByte()
if err != nil {
return 0, err
}
result |= uint64(b&0x7f) << shift
if b&0x80 == 0 {
break
}
shift += 7
}
return
}
// Source: https://en.wikipedia.org/wiki/LEB128#Decode_signed_integer
func readSLEB128(r *bytes.Buffer) (result int64, err error) {
var shift uint8
var b byte
var rawResult uint64
for {
b, err = r.ReadByte()
if err != nil {
return 0, err
}
rawResult |= uint64(b&0x7f) << shift
shift += 7
if b&0x80 == 0 {
break
}
}
// sign bit of byte is second high order bit (0x40)
if shift < 64 && b&0x40 != 0 {
// sign extend
rawResult |= ^uint64(0) << shift
}
result = int64(rawResult)
return
}