You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

454 lines
20 KiB

package compiler
import (
"errors"
"go/types"
"github.com/aykevl/go-llvm"
"github.com/aykevl/tinygo/ir"
"golang.org/x/tools/go/ssa"
)
// parseMakeInterface emits the LLVM IR for the *ssa.MakeInterface instruction.
// It tries to put the type in the interface value, but if that's not possible,
// it will do an allocation of the right size and put that in the interface
// value field.
//
// An interface value is a {typecode, value} tuple, or {i16, i8*} to be exact.
func (c *Compiler) parseMakeInterface(val llvm.Value, typ types.Type, global string) (llvm.Value, error) {
var itfValue llvm.Value
size := c.targetData.TypeAllocSize(val.Type())
if size > c.targetData.TypeAllocSize(c.i8ptrType) {
if global != "" {
// Allocate in a global variable.
global := llvm.AddGlobal(c.mod, val.Type(), global+"$itfvalue")
global.SetInitializer(val)
global.SetLinkage(llvm.InternalLinkage)
global.SetGlobalConstant(true)
zero := llvm.ConstInt(c.ctx.Int32Type(), 0, false)
itfValueRaw := llvm.ConstInBoundsGEP(global, []llvm.Value{zero, zero})
itfValue = llvm.ConstBitCast(itfValueRaw, c.i8ptrType)
} else {
// Allocate on the heap and put a pointer in the interface.
// TODO: escape analysis.
sizeValue := llvm.ConstInt(c.uintptrType, size, false)
alloc := c.createRuntimeCall("alloc", []llvm.Value{sizeValue}, "")
itfValueCast := c.builder.CreateBitCast(alloc, llvm.PointerType(val.Type(), 0), "")
c.builder.CreateStore(val, itfValueCast)
itfValue = c.builder.CreateBitCast(itfValueCast, c.i8ptrType, "")
}
} else if size == 0 {
itfValue = llvm.ConstPointerNull(c.i8ptrType)
} else {
// Directly place the value in the interface.
switch val.Type().TypeKind() {
case llvm.IntegerTypeKind:
itfValue = c.builder.CreateIntToPtr(val, c.i8ptrType, "")
case llvm.PointerTypeKind:
itfValue = c.builder.CreateBitCast(val, c.i8ptrType, "")
case llvm.StructTypeKind:
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "")
memStructPtr := c.builder.CreateBitCast(mem, llvm.PointerType(val.Type(), 0), "")
c.builder.CreateStore(val, memStructPtr)
itfValue = c.builder.CreateLoad(mem, "")
default:
return llvm.Value{}, errors.New("todo: makeinterface: cast small type to i8*")
}
}
itfTypeNum, _ := c.ir.TypeNum(typ)
if itfTypeNum >= 1<<16 {
return llvm.Value{}, errors.New("interface typecodes do not fit in a 16-bit integer")
}
itf := llvm.ConstNamedStruct(c.mod.GetTypeByName("runtime._interface"), []llvm.Value{llvm.ConstInt(c.ctx.Int16Type(), uint64(itfTypeNum), false), llvm.Undef(c.i8ptrType)})
itf = c.builder.CreateInsertValue(itf, itfValue, 1, "")
return itf, nil
}
// parseTypeAssert will emit the code for a typeassert, used in if statements
// and in switch statements (Go SSA does not have type switches, only if/else
// chains). Note that even though the Go SSA does not contain type switches,
// LLVM will recognize the pattern and make it a real switch in many cases.
//
// Type asserts on concrete types are trivial: just compare type numbers. Type
// asserts on interfaces are more difficult to implement and so are delegated to
// a runtime library function.
func (c *Compiler) parseTypeAssert(frame *Frame, expr *ssa.TypeAssert) (llvm.Value, error) {
itf, err := c.parseExpr(frame, expr.X)
if err != nil {
return llvm.Value{}, err
}
assertedType, err := c.getLLVMType(expr.AssertedType)
if err != nil {
return llvm.Value{}, err
}
valueNil, err := c.getZeroValue(assertedType)
if err != nil {
return llvm.Value{}, err
}
actualTypeNum := c.builder.CreateExtractValue(itf, 0, "interface.type")
commaOk := llvm.Value{}
if itf, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type.
// This is slightly non-trivial: at runtime the list of methods
// needs to be checked to see whether it implements the interface.
// At the same time, the interface value itself is unchanged.
itfTypeNum := c.ir.InterfaceNum(itf)
itfTypeNumValue := llvm.ConstInt(c.ctx.Int16Type(), uint64(itfTypeNum), false)
commaOk = c.createRuntimeCall("interfaceImplements", []llvm.Value{actualTypeNum, itfTypeNumValue}, "")
} else {
// Type assert on concrete type.
// This is easy: just compare the type number.
assertedTypeNum, typeExists := c.ir.TypeNum(expr.AssertedType)
if !typeExists {
// Static analysis has determined this type assert will never apply.
// Using undef here so that LLVM knows we'll never get here and
// can optimize accordingly.
undef := llvm.Undef(assertedType)
commaOk := llvm.ConstInt(c.ctx.Int1Type(), 0, false)
if expr.CommaOk {
return c.ctx.ConstStruct([]llvm.Value{undef, commaOk}, false), nil
} else {
c.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return undef, nil
}
}
if assertedTypeNum >= 1<<16 {
return llvm.Value{}, errors.New("interface typecodes do not fit in a 16-bit integer")
}
assertedTypeNumValue := llvm.ConstInt(c.ctx.Int16Type(), uint64(assertedTypeNum), false)
commaOk = c.builder.CreateICmp(llvm.IntEQ, assertedTypeNumValue, actualTypeNum, "")
}
// Add 2 new basic blocks (that should get optimized away): one for the
// 'ok' case and one for all instructions following this type assert.
// This is necessary because we need to insert the casted value or the
// nil value based on whether the assert was successful. Casting before
// this check tells LLVM that it can use this value and may
// speculatively dereference pointers before the check. This can lead to
// a miscompilation resulting in a segfault at runtime.
// Additionally, this is even required by the Go spec: a failed
// typeassert should return a zero value, not an incorrectly casted
// value.
prevBlock := c.builder.GetInsertBlock()
okBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.ok")
nextBlock := c.ctx.AddBasicBlock(frame.fn.LLVMFn, "typeassert.next")
frame.blockExits[frame.currentBlock] = nextBlock // adjust outgoing block for phi nodes
c.builder.CreateCondBr(commaOk, okBlock, nextBlock)
// Retrieve the value from the interface if the type assert was
// successful.
c.builder.SetInsertPointAtEnd(okBlock)
var valueOk llvm.Value
if _, ok := expr.AssertedType.Underlying().(*types.Interface); ok {
// Type assert on interface type. Easy: just return the same
// interface value.
valueOk = itf
} else {
// Type assert on concrete type. Extract the underlying type from
// the interface (but only after checking it matches).
valuePtr := c.builder.CreateExtractValue(itf, 1, "typeassert.value.ptr")
size := c.targetData.TypeAllocSize(assertedType)
if size > c.targetData.TypeAllocSize(c.i8ptrType) {
// Value was stored in an allocated buffer, load it from there.
valuePtrCast := c.builder.CreateBitCast(valuePtr, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(valuePtrCast, "typeassert.value.ok")
} else if size == 0 {
valueOk, err = c.getZeroValue(assertedType)
if err == nil {
return llvm.Value{}, err
}
} else {
// Value was stored directly in the interface.
switch assertedType.TypeKind() {
case llvm.IntegerTypeKind:
valueOk = c.builder.CreatePtrToInt(valuePtr, assertedType, "typeassert.value.ok")
case llvm.PointerTypeKind:
valueOk = c.builder.CreateBitCast(valuePtr, assertedType, "typeassert.value.ok")
case llvm.StructTypeKind:
// A bitcast would be useful here, but bitcast doesn't allow
// aggregate types. So we'll bitcast it using an alloca.
// Hopefully this will get optimized away.
mem := c.builder.CreateAlloca(c.i8ptrType, "")
c.builder.CreateStore(valuePtr, mem)
memStructPtr := c.builder.CreateBitCast(mem, llvm.PointerType(assertedType, 0), "")
valueOk = c.builder.CreateLoad(memStructPtr, "typeassert.value.ok")
default:
return llvm.Value{}, errors.New("todo: typeassert: bitcast small types")
}
}
}
c.builder.CreateBr(nextBlock)
// Continue after the if statement.
c.builder.SetInsertPointAtEnd(nextBlock)
phi := c.builder.CreatePHI(assertedType, "typeassert.value")
phi.AddIncoming([]llvm.Value{valueNil, valueOk}, []llvm.BasicBlock{prevBlock, okBlock})
if expr.CommaOk {
tuple := c.ctx.ConstStruct([]llvm.Value{llvm.Undef(assertedType), llvm.Undef(c.ctx.Int1Type())}, false) // create empty tuple
tuple = c.builder.CreateInsertValue(tuple, phi, 0, "") // insert value
tuple = c.builder.CreateInsertValue(tuple, commaOk, 1, "") // insert 'comma ok' boolean
return tuple, nil
} else {
// This is kind of dirty as the branch above becomes mostly useless,
// but hopefully this gets optimized away.
c.createRuntimeCall("interfaceTypeAssert", []llvm.Value{commaOk}, "")
return phi, nil
}
}
// getInvokeCall creates and returns the function pointer and parameters of an
// interface call. It can be used in a call or defer instruction.
func (c *Compiler) getInvokeCall(frame *Frame, instr *ssa.CallCommon) (llvm.Value, []llvm.Value, error) {
// Call an interface method with dynamic dispatch.
itf, err := c.parseExpr(frame, instr.Value) // interface
if err != nil {
return llvm.Value{}, nil, err
}
llvmFnType, err := c.getLLVMType(instr.Method.Type())
if err != nil {
return llvm.Value{}, nil, err
}
if c.ir.SignatureNeedsContext(instr.Method.Type().(*types.Signature)) {
// This is somewhat of a hack.
// getLLVMType() has created a closure type for us, but we don't
// actually want a closure type as an interface call can never be a
// closure call. So extract the function pointer type from the
// closure.
// This happens because somewhere the same function signature is
// used in a closure or bound method.
llvmFnType = llvmFnType.Subtypes()[1]
}
typecode := c.builder.CreateExtractValue(itf, 0, "invoke.typecode")
values := []llvm.Value{
typecode,
llvm.ConstInt(c.ctx.Int16Type(), uint64(c.ir.MethodNum(instr.Method)), false),
}
fn := c.createRuntimeCall("interfaceMethod", values, "invoke.func")
fnCast := c.builder.CreateBitCast(fn, llvmFnType, "invoke.func.cast")
receiverValue := c.builder.CreateExtractValue(itf, 1, "invoke.func.receiver")
args := []llvm.Value{receiverValue}
for _, arg := range instr.Args {
val, err := c.parseExpr(frame, arg)
if err != nil {
return llvm.Value{}, nil, err
}
args = append(args, val)
}
if c.ir.SignatureNeedsContext(instr.Method.Type().(*types.Signature)) {
// This function takes an extra context parameter. An interface call
// cannot also be a closure but we have to supply the nil pointer
// anyway.
args = append(args, llvm.ConstPointerNull(c.i8ptrType))
}
return fnCast, args, nil
}
// Initialize runtime type information, for interfaces.
// See src/runtime/interface.go for more details.
func (c *Compiler) createInterfaceRTTI() error {
dynamicTypes := c.ir.AllDynamicTypes()
numDynamicTypes := 0
for _, meta := range dynamicTypes {
numDynamicTypes += len(meta.Methods)
}
ranges := make([]llvm.Value, 0, len(dynamicTypes))
funcPointers := make([]llvm.Value, 0, numDynamicTypes)
signatures := make([]llvm.Value, 0, numDynamicTypes)
startIndex := 0
rangeType := c.mod.GetTypeByName("runtime.methodSetRange")
for _, meta := range dynamicTypes {
rangeValues := []llvm.Value{
llvm.ConstInt(c.ctx.Int16Type(), uint64(startIndex), false),
llvm.ConstInt(c.ctx.Int16Type(), uint64(len(meta.Methods)), false),
}
rangeValue := llvm.ConstNamedStruct(rangeType, rangeValues)
ranges = append(ranges, rangeValue)
methods := make([]*types.Selection, 0, len(meta.Methods))
for _, method := range meta.Methods {
methods = append(methods, method)
}
c.ir.SortMethods(methods)
for _, method := range methods {
f := c.ir.GetFunction(c.ir.Program.MethodValue(method))
if f.LLVMFn.IsNil() {
return errors.New("cannot find function: " + f.LinkName())
}
fn, err := c.wrapInterfaceInvoke(f)
if err != nil {
return err
}
fnPtr := llvm.ConstBitCast(fn, c.i8ptrType)
funcPointers = append(funcPointers, fnPtr)
signatureNum := c.ir.MethodNum(method.Obj().(*types.Func))
signature := llvm.ConstInt(c.ctx.Int16Type(), uint64(signatureNum), false)
signatures = append(signatures, signature)
}
startIndex += len(meta.Methods)
}
interfaceTypes := c.ir.AllInterfaces()
interfaceIndex := make([]llvm.Value, len(interfaceTypes))
interfaceLengths := make([]llvm.Value, len(interfaceTypes))
interfaceMethods := make([]llvm.Value, 0)
for i, itfType := range interfaceTypes {
if itfType.Type.NumMethods() > 0xff {
return errors.New("too many methods for interface " + itfType.Type.String())
}
interfaceIndex[i] = llvm.ConstInt(c.ctx.Int16Type(), uint64(i), false)
interfaceLengths[i] = llvm.ConstInt(c.ctx.Int8Type(), uint64(itfType.Type.NumMethods()), false)
funcs := make([]*types.Func, itfType.Type.NumMethods())
for i := range funcs {
funcs[i] = itfType.Type.Method(i)
}
c.ir.SortFuncs(funcs)
for _, f := range funcs {
id := llvm.ConstInt(c.ctx.Int16Type(), uint64(c.ir.MethodNum(f)), false)
interfaceMethods = append(interfaceMethods, id)
}
}
if len(ranges) >= 1<<16 {
return errors.New("method call numbers do not fit in a 16-bit integer")
}
// Replace the pre-created arrays with the generated arrays.
rangeArray := llvm.ConstArray(rangeType, ranges)
rangeArrayNewGlobal := llvm.AddGlobal(c.mod, rangeArray.Type(), "runtime.methodSetRanges.tmp")
rangeArrayNewGlobal.SetInitializer(rangeArray)
rangeArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
rangeArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetRanges")
rangeArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(rangeArrayNewGlobal, rangeArrayOldGlobal.Type()))
rangeArrayOldGlobal.EraseFromParentAsGlobal()
rangeArrayNewGlobal.SetName("runtime.methodSetRanges")
funcArray := llvm.ConstArray(c.i8ptrType, funcPointers)
funcArrayNewGlobal := llvm.AddGlobal(c.mod, funcArray.Type(), "runtime.methodSetFunctions.tmp")
funcArrayNewGlobal.SetInitializer(funcArray)
funcArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
funcArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetFunctions")
funcArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(funcArrayNewGlobal, funcArrayOldGlobal.Type()))
funcArrayOldGlobal.EraseFromParentAsGlobal()
funcArrayNewGlobal.SetName("runtime.methodSetFunctions")
signatureArray := llvm.ConstArray(c.ctx.Int16Type(), signatures)
signatureArrayNewGlobal := llvm.AddGlobal(c.mod, signatureArray.Type(), "runtime.methodSetSignatures.tmp")
signatureArrayNewGlobal.SetInitializer(signatureArray)
signatureArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
signatureArrayOldGlobal := c.mod.NamedGlobal("runtime.methodSetSignatures")
signatureArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(signatureArrayNewGlobal, signatureArrayOldGlobal.Type()))
signatureArrayOldGlobal.EraseFromParentAsGlobal()
signatureArrayNewGlobal.SetName("runtime.methodSetSignatures")
interfaceIndexArray := llvm.ConstArray(c.ctx.Int16Type(), interfaceIndex)
interfaceIndexArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceIndexArray.Type(), "runtime.interfaceIndex.tmp")
interfaceIndexArrayNewGlobal.SetInitializer(interfaceIndexArray)
interfaceIndexArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceIndexArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceIndex")
interfaceIndexArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceIndexArrayNewGlobal, interfaceIndexArrayOldGlobal.Type()))
interfaceIndexArrayOldGlobal.EraseFromParentAsGlobal()
interfaceIndexArrayNewGlobal.SetName("runtime.interfaceIndex")
interfaceLengthsArray := llvm.ConstArray(c.ctx.Int8Type(), interfaceLengths)
interfaceLengthsArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceLengthsArray.Type(), "runtime.interfaceLengths.tmp")
interfaceLengthsArrayNewGlobal.SetInitializer(interfaceLengthsArray)
interfaceLengthsArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceLengthsArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceLengths")
interfaceLengthsArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceLengthsArrayNewGlobal, interfaceLengthsArrayOldGlobal.Type()))
interfaceLengthsArrayOldGlobal.EraseFromParentAsGlobal()
interfaceLengthsArrayNewGlobal.SetName("runtime.interfaceLengths")
interfaceMethodsArray := llvm.ConstArray(c.ctx.Int16Type(), interfaceMethods)
interfaceMethodsArrayNewGlobal := llvm.AddGlobal(c.mod, interfaceMethodsArray.Type(), "runtime.interfaceMethods.tmp")
interfaceMethodsArrayNewGlobal.SetInitializer(interfaceMethodsArray)
interfaceMethodsArrayNewGlobal.SetLinkage(llvm.InternalLinkage)
interfaceMethodsArrayOldGlobal := c.mod.NamedGlobal("runtime.interfaceMethods")
interfaceMethodsArrayOldGlobal.ReplaceAllUsesWith(llvm.ConstBitCast(interfaceMethodsArrayNewGlobal, interfaceMethodsArrayOldGlobal.Type()))
interfaceMethodsArrayOldGlobal.EraseFromParentAsGlobal()
interfaceMethodsArrayNewGlobal.SetName("runtime.interfaceMethods")
c.mod.NamedGlobal("runtime.firstTypeWithMethods").SetInitializer(llvm.ConstInt(c.ctx.Int16Type(), uint64(c.ir.FirstDynamicType()), false))
return nil
}
// Wrap an interface method function pointer. The wrapper takes in a pointer to
// the underlying value, dereferences it, and calls the real method. This
// wrapper is only needed when the interface value actually doesn't fit in a
// pointer and a pointer to the value must be created.
func (c *Compiler) wrapInterfaceInvoke(f *ir.Function) (llvm.Value, error) {
receiverType, err := c.getLLVMType(f.Params[0].Type())
if err != nil {
return llvm.Value{}, err
}
expandedReceiverType := c.expandFormalParamType(receiverType)
if c.targetData.TypeAllocSize(receiverType) <= c.targetData.TypeAllocSize(c.i8ptrType) && len(expandedReceiverType) == 1 {
// nothing to wrap
return f.LLVMFn, nil
}
// create wrapper function
fnType := f.LLVMFn.Type().ElementType()
paramTypes := append([]llvm.Type{c.i8ptrType}, fnType.ParamTypes()[len(expandedReceiverType):]...)
wrapFnType := llvm.FunctionType(fnType.ReturnType(), paramTypes, false)
wrapper := llvm.AddFunction(c.mod, f.LinkName()+"$invoke", wrapFnType)
wrapper.SetLinkage(llvm.InternalLinkage)
wrapper.SetUnnamedAddr(true)
// add debug info
if c.Debug {
pos := c.ir.Program.Fset.Position(f.Pos())
difunc, err := c.attachDebugInfoRaw(f, wrapper, "$invoke", pos.Filename, pos.Line)
if err != nil {
return llvm.Value{}, err
}
c.builder.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), difunc, llvm.Metadata{})
}
// set up IR builder
block := c.ctx.AddBasicBlock(wrapper, "entry")
c.builder.SetInsertPointAtEnd(block)
var receiverPtr llvm.Value
if c.targetData.TypeAllocSize(receiverType) > c.targetData.TypeAllocSize(c.i8ptrType) {
// The receiver is passed in using a pointer. We have to load it here
// and pass it by value to the real function.
// Load the underlying value.
receiverPtrType := llvm.PointerType(receiverType, 0)
receiverPtr = c.builder.CreateBitCast(wrapper.Param(0), receiverPtrType, "receiver.ptr")
} else if len(expandedReceiverType) != 1 {
// The value is stored in the interface, but it is of type struct which
// is expanded to multiple parameters (e.g. {i8, i8}). So we have to
// receive the struct as parameter, expand it, and pass it on to the
// real function.
// Cast the passed-in i8* to the struct value (using an alloca) and
// extract its values.
alloca := c.builder.CreateAlloca(c.i8ptrType, "receiver.alloca")
c.builder.CreateStore(wrapper.Param(0), alloca)
receiverPtr = c.builder.CreateBitCast(alloca, llvm.PointerType(receiverType, 0), "receiver.ptr")
} else {
panic("unreachable")
}
receiverValue := c.builder.CreateLoad(receiverPtr, "receiver")
params := append(c.expandFormalParam(receiverValue), wrapper.Params()[1:]...)
if fnType.ReturnType().TypeKind() == llvm.VoidTypeKind {
c.builder.CreateCall(f.LLVMFn, params, "")
c.builder.CreateRetVoid()
} else {
ret := c.builder.CreateCall(f.LLVMFn, params, "ret")
c.builder.CreateRet(ret)
}
return wrapper, nil
}