You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

573 lines
18 KiB

// Package compileopts contains the configuration for a single to-be-built
// binary.
package compileopts
import (
"errors"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/google/shlex"
"github.com/tinygo-org/tinygo/goenv"
)
// Config keeps all configuration affecting the build in a single struct.
type Config struct {
Options *Options
Target *TargetSpec
GoMinorVersion int
TestConfig TestConfig
}
// Triple returns the LLVM target triple, like armv6m-unknown-unknown-eabi.
func (c *Config) Triple() string {
return c.Target.Triple
}
// CPU returns the LLVM CPU name, like atmega328p or arm7tdmi. It may return an
// empty string if the CPU name is not known.
func (c *Config) CPU() string {
return c.Target.CPU
}
// Features returns a list of features this CPU supports. For example, for a
// RISC-V processor, that could be "+a,+c,+m". For many targets, an empty list
// will be returned.
func (c *Config) Features() string {
if c.Target.Features == "" {
return c.Options.LLVMFeatures
}
if c.Options.LLVMFeatures == "" {
return c.Target.Features
}
return c.Target.Features + "," + c.Options.LLVMFeatures
}
// ABI returns the -mabi= flag for this target (like -mabi=lp64). A zero-length
// string is returned if the target doesn't specify an ABI.
func (c *Config) ABI() string {
return c.Target.ABI
}
// GOOS returns the GOOS of the target. This might not always be the actual OS:
// for example, bare-metal targets will usually pretend to be linux to get the
// standard library to compile.
func (c *Config) GOOS() string {
return c.Target.GOOS
}
// GOARCH returns the GOARCH of the target. This might not always be the actual
// archtecture: for example, the AVR target is not supported by the Go standard
// library so such targets will usually pretend to be linux/arm.
func (c *Config) GOARCH() string {
return c.Target.GOARCH
}
// GOARM will return the GOARM environment variable given to the compiler when
// building a program.
func (c *Config) GOARM() string {
return c.Options.GOARM
}
// BuildTags returns the complete list of build tags used during this build.
func (c *Config) BuildTags() []string {
tags := append(c.Target.BuildTags, []string{"tinygo", "math_big_pure_go", "gc." + c.GC(), "scheduler." + c.Scheduler(), "serial." + c.Serial()}...)
for i := 1; i <= c.GoMinorVersion; i++ {
tags = append(tags, fmt.Sprintf("go1.%d", i))
}
tags = append(tags, c.Options.Tags...)
return tags
}
// CgoEnabled returns true if (and only if) CGo is enabled. It is true by
// default and false if CGO_ENABLED is set to "0".
func (c *Config) CgoEnabled() bool {
return goenv.Get("CGO_ENABLED") == "1"
}
// GC returns the garbage collection strategy in use on this platform. Valid
// values are "none", "leaking", "conservative" and "precise".
func (c *Config) GC() string {
if c.Options.GC != "" {
return c.Options.GC
}
if c.Target.GC != "" {
return c.Target.GC
}
return "conservative"
}
// NeedsStackObjects returns true if the compiler should insert stack objects
// that can be traced by the garbage collector.
func (c *Config) NeedsStackObjects() bool {
switch c.GC() {
case "conservative", "custom", "precise":
for _, tag := range c.BuildTags() {
if tag == "tinygo.wasm" {
return true
}
}
return false
default:
return false
}
}
// Scheduler returns the scheduler implementation. Valid values are "none",
// "asyncify" and "tasks".
func (c *Config) Scheduler() string {
if c.Options.Scheduler != "" {
return c.Options.Scheduler
}
if c.Target.Scheduler != "" {
return c.Target.Scheduler
}
// Fall back to none.
return "none"
}
// Serial returns the serial implementation for this build configuration: uart,
// usb (meaning USB-CDC), or none.
func (c *Config) Serial() string {
if c.Options.Serial != "" {
return c.Options.Serial
}
if c.Target.Serial != "" {
return c.Target.Serial
}
return "none"
}
// OptLevels returns the optimization level (0-2), size level (0-2), and inliner
// threshold as used in the LLVM optimization pipeline.
func (c *Config) OptLevel() (level string, speedLevel, sizeLevel int) {
switch c.Options.Opt {
case "none", "0":
return "O0", 0, 0
case "1":
return "O1", 1, 0
case "2":
return "O2", 2, 0
case "s":
return "Os", 2, 1
case "z":
return "Oz", 2, 2 // default
default:
// This is not shown to the user: valid choices are already checked as
// part of Options.Verify(). It is here as a sanity check.
panic("unknown optimization level: -opt=" + c.Options.Opt)
}
}
// PanicStrategy returns the panic strategy selected for this target. Valid
// values are "print" (print the panic value, then exit) or "trap" (issue a trap
// instruction).
func (c *Config) PanicStrategy() string {
return c.Options.PanicStrategy
}
// AutomaticStackSize returns whether goroutine stack sizes should be determined
// automatically at compile time, if possible. If it is false, no attempt is
// made.
func (c *Config) AutomaticStackSize() bool {
if c.Target.AutoStackSize != nil && c.Scheduler() == "tasks" {
return *c.Target.AutoStackSize
}
return false
}
// StackSize returns the default stack size to be used for goroutines, if the
// stack size could not be determined automatically at compile time.
func (c *Config) StackSize() uint64 {
if c.Options.StackSize != 0 {
return c.Options.StackSize
}
return c.Target.DefaultStackSize
}
// MaxStackAlloc returns the size of the maximum allocation to put on the stack vs heap.
func (c *Config) MaxStackAlloc() uint64 {
if c.StackSize() > 32*1024 {
return 1024
}
return 256
}
// RP2040BootPatch returns whether the RP2040 boot patch should be applied that
// calculates and patches in the checksum for the 2nd stage bootloader.
func (c *Config) RP2040BootPatch() bool {
if c.Target.RP2040BootPatch != nil {
return *c.Target.RP2040BootPatch
}
return false
}
// MuslArchitecture returns the architecture name as used in musl libc. It is
// usually the same as the first part of the LLVM triple, but not always.
func MuslArchitecture(triple string) string {
arch := strings.Split(triple, "-")[0]
if strings.HasPrefix(arch, "arm") || strings.HasPrefix(arch, "thumb") {
arch = "arm"
}
return arch
}
// LibcPath returns the path to the libc directory. The libc path will be either
// a precompiled libc shipped with a TinyGo build, or a libc path in the cache
// directory (which might not yet be built).
func (c *Config) LibcPath(name string) (path string, precompiled bool) {
archname := c.Triple()
if c.CPU() != "" {
archname += "-" + c.CPU()
}
if c.ABI() != "" {
archname += "-" + c.ABI()
}
// Try to load a precompiled library.
precompiledDir := filepath.Join(goenv.Get("TINYGOROOT"), "pkg", archname, name)
if _, err := os.Stat(precompiledDir); err == nil {
// Found a precompiled library for this OS/architecture. Return the path
// directly.
return precompiledDir, true
}
// No precompiled library found. Determine the path name that will be used
// in the build cache.
return filepath.Join(goenv.Get("GOCACHE"), name+"-"+archname), false
}
// DefaultBinaryExtension returns the default extension for binaries, such as
// .exe, .wasm, or no extension (depending on the target).
func (c *Config) DefaultBinaryExtension() string {
parts := strings.Split(c.Triple(), "-")
if parts[0] == "wasm32" {
// WebAssembly files always have the .wasm file extension.
return ".wasm"
}
if len(parts) >= 3 && parts[2] == "windows" {
// Windows uses .exe.
return ".exe"
}
if len(parts) >= 3 && parts[2] == "unknown" {
// There appears to be a convention to use the .elf file extension for
// ELF files intended for microcontrollers. I'm not aware of the origin
// of this, it's just something that is used by many projects.
// I think it's a good tradition, so let's keep it.
return ".elf"
}
// Linux, MacOS, etc, don't use a file extension. Use it as a fallback.
return ""
}
// CFlags returns the flags to pass to the C compiler. This is necessary for CGo
// preprocessing.
func (c *Config) CFlags(libclang bool) []string {
var cflags []string
for _, flag := range c.Target.CFlags {
cflags = append(cflags, strings.ReplaceAll(flag, "{root}", goenv.Get("TINYGOROOT")))
}
resourceDir := goenv.ClangResourceDir(libclang)
if resourceDir != "" {
// The resource directory contains the built-in clang headers like
// stdbool.h, stdint.h, float.h, etc.
// It is left empty if we're using an external compiler (that already
// knows these headers).
cflags = append(cflags,
"-resource-dir="+resourceDir,
)
if strings.HasPrefix(c.Triple(), "xtensa") {
// workaround needed in LLVM 16, see: https://github.com/espressif/llvm-project/issues/83
cflags = append(cflags, "-isystem", filepath.Join(resourceDir, "include"))
}
}
switch c.Target.Libc {
case "darwin-libSystem":
root := goenv.Get("TINYGOROOT")
cflags = append(cflags,
"-nostdlibinc",
"-isystem", filepath.Join(root, "lib/macos-minimal-sdk/src/usr/include"),
)
case "picolibc":
root := goenv.Get("TINYGOROOT")
picolibcDir := filepath.Join(root, "lib", "picolibc", "newlib", "libc")
path, _ := c.LibcPath("picolibc")
cflags = append(cflags,
"-nostdlibinc",
"-isystem", filepath.Join(path, "include"),
"-isystem", filepath.Join(picolibcDir, "include"),
"-isystem", filepath.Join(picolibcDir, "tinystdio"),
)
case "musl":
root := goenv.Get("TINYGOROOT")
path, _ := c.LibcPath("musl")
arch := MuslArchitecture(c.Triple())
cflags = append(cflags,
"-nostdlibinc",
"-isystem", filepath.Join(path, "include"),
"-isystem", filepath.Join(root, "lib", "musl", "arch", arch),
"-isystem", filepath.Join(root, "lib", "musl", "include"),
)
case "wasi-libc":
root := goenv.Get("TINYGOROOT")
cflags = append(cflags, "--sysroot="+root+"/lib/wasi-libc/sysroot")
case "mingw-w64":
root := goenv.Get("TINYGOROOT")
path, _ := c.LibcPath("mingw-w64")
cflags = append(cflags,
"-nostdlibinc",
"-isystem", filepath.Join(path, "include"),
"-isystem", filepath.Join(root, "lib", "mingw-w64", "mingw-w64-headers", "crt"),
"-isystem", filepath.Join(root, "lib", "mingw-w64", "mingw-w64-headers", "defaults", "include"),
"-D_UCRT",
)
case "":
// No libc specified, nothing to add.
default:
// Incorrect configuration. This could be handled in a better way, but
// usually this will be found by developers (not by TinyGo users).
panic("unknown libc: " + c.Target.Libc)
}
// Always emit debug information. It is optionally stripped at link time.
cflags = append(cflags, "-gdwarf-4")
// Use the same optimization level as TinyGo.
cflags = append(cflags, "-O"+c.Options.Opt)
// Set the LLVM target triple.
cflags = append(cflags, "--target="+c.Triple())
// Set the -mcpu (or similar) flag.
if c.Target.CPU != "" {
if c.GOARCH() == "amd64" || c.GOARCH() == "386" {
// x86 prefers the -march flag (-mcpu is deprecated there).
cflags = append(cflags, "-march="+c.Target.CPU)
} else if strings.HasPrefix(c.Triple(), "avr") {
// AVR MCUs use -mmcu instead of -mcpu.
cflags = append(cflags, "-mmcu="+c.Target.CPU)
} else {
// The rest just uses -mcpu.
cflags = append(cflags, "-mcpu="+c.Target.CPU)
}
}
// Set the -mabi flag, if needed.
if c.ABI() != "" {
cflags = append(cflags, "-mabi="+c.ABI())
}
return cflags
}
// LDFlags returns the flags to pass to the linker. A few more flags are needed
// (like the one for the compiler runtime), but this represents the majority of
// the flags.
func (c *Config) LDFlags() []string {
root := goenv.Get("TINYGOROOT")
// Merge and adjust LDFlags.
var ldflags []string
for _, flag := range c.Target.LDFlags {
ldflags = append(ldflags, strings.ReplaceAll(flag, "{root}", root))
}
ldflags = append(ldflags, "-L", root)
if c.Target.LinkerScript != "" {
ldflags = append(ldflags, "-T", c.Target.LinkerScript)
}
return ldflags
}
main: refactor compile/link part to a builder package This is a large commit that moves all code directly related to compiling/linking into a new builder package. This has a number of advantages: * It cleanly separates the API between the command line and the full compilation (with a very small API surface). * When the compiler finally compiles one package at a time (instead of everything at once as it does now), something will have to invoke it once per package. This builder package will be the natural place to do that, and also be the place where the whole process can be parallelized. * It allows the TinyGo compiler to be used as a package. A client can simply import the builder package and compile code using it. As part of this refactor, the following additional things changed: * Exported symbols have been made unexported when they weren&#39;t needed. * The compilation target has been moved into the compileopts.Options struct. This is done because the target really is just another compiler option, and the API is simplified by moving it in there. * The moveFile function has been duplicated. It does not really belong in the builder API but is used both by the builder and the command line. Moving it into a separate package didn&#39;t seem useful either for what is essentially an utility function. * Some doc strings have been improved. Some future changes/refactors I&#39;d like to make after this commit: * Clean up the API between the builder and the compiler package. * Perhaps move the test files (in testdata/) into the builder package. * Perhaps move the loader package into the builder package.
5 years ago
// ExtraFiles returns the list of extra files to be built and linked with the
// executable. This can include extra C and assembly files.
func (c *Config) ExtraFiles() []string {
return c.Target.ExtraFiles
}
// DumpSSA returns whether to dump Go SSA while compiling (-dumpssa flag). Only
// enable this for debugging.
func (c *Config) DumpSSA() bool {
return c.Options.DumpSSA
}
// VerifyIR returns whether to run extra checks on the IR. This is normally
// disabled but enabled during testing.
func (c *Config) VerifyIR() bool {
return c.Options.VerifyIR
}
// Debug returns whether debug (DWARF) information should be retained by the
// linker. By default, debug information is retained, but it can be removed
// with the -no-debug flag.
func (c *Config) Debug() bool {
return c.Options.Debug
}
// BinaryFormat returns an appropriate binary format, based on the file
// extension and the configured binary format in the target JSON file.
func (c *Config) BinaryFormat(ext string) string {
switch ext {
case ".bin", ".gba", ".nro":
// The simplest format possible: dump everything in a raw binary file.
if c.Target.BinaryFormat != "" {
return c.Target.BinaryFormat
}
return "bin"
case ".img":
// Image file. Only defined for the ESP32 at the moment, where it is a
// full (runnable) image that can be used in the Espressif QEMU fork.
if c.Target.BinaryFormat != "" {
return c.Target.BinaryFormat + "-img"
}
return "bin"
case ".hex":
// Similar to bin, but includes the start address and is thus usually a
// better format.
return "hex"
case ".uf2":
// Special purpose firmware format, mainly used on Adafruit boards.
// More information:
// https://github.com/Microsoft/uf2
return "uf2"
case ".zip":
if c.Target.BinaryFormat != "" {
return c.Target.BinaryFormat
}
return "zip"
default:
// Use the ELF format for unrecognized file formats.
return "elf"
}
}
// Programmer returns the flash method and OpenOCD interface name given a
// particular configuration. It may either be all configured in the target JSON
// file or be modified using the -programmmer command-line option.
func (c *Config) Programmer() (method, openocdInterface string) {
switch c.Options.Programmer {
case "":
// No configuration supplied.
return c.Target.FlashMethod, c.Target.OpenOCDInterface
case "openocd", "msd", "command":
// The -programmer flag only specifies the flash method.
return c.Options.Programmer, c.Target.OpenOCDInterface
case "bmp":
// The -programmer flag only specifies the flash method.
return c.Options.Programmer, ""
default:
// The -programmer flag specifies something else, assume it specifies
// the OpenOCD interface name.
return "openocd", c.Options.Programmer
}
}
// OpenOCDConfiguration returns a list of command line arguments to OpenOCD.
// This list of command-line arguments is based on the various OpenOCD-related
// flags in the target specification.
func (c *Config) OpenOCDConfiguration() (args []string, err error) {
_, openocdInterface := c.Programmer()
if openocdInterface == "" {
return nil, errors.New("OpenOCD programmer not set")
}
if !regexp.MustCompile(`^[\p{L}0-9_-]+$`).MatchString(openocdInterface) {
return nil, fmt.Errorf("OpenOCD programmer has an invalid name: %#v", openocdInterface)
}
if c.Target.OpenOCDTarget == "" {
return nil, errors.New("OpenOCD chip not set")
}
if !regexp.MustCompile(`^[\p{L}0-9_-]+$`).MatchString(c.Target.OpenOCDTarget) {
return nil, fmt.Errorf("OpenOCD target has an invalid name: %#v", c.Target.OpenOCDTarget)
}
if c.Target.OpenOCDTransport != "" && c.Target.OpenOCDTransport != "swd" {
return nil, fmt.Errorf("unknown OpenOCD transport: %#v", c.Target.OpenOCDTransport)
}
args = []string{"-f", "interface/" + openocdInterface + ".cfg"}
for _, cmd := range c.Target.OpenOCDCommands {
args = append(args, "-c", cmd)
}
if c.Target.OpenOCDTransport != "" {
transport := c.Target.OpenOCDTransport
if transport == "swd" {
switch openocdInterface {
case "stlink-dap":
transport = "dapdirect_swd"
}
}
args = append(args, "-c", "transport select "+transport)
}
args = append(args, "-f", "target/"+c.Target.OpenOCDTarget+".cfg")
return args, nil
}
// CodeModel returns the code model used on this platform.
func (c *Config) CodeModel() string {
if c.Target.CodeModel != "" {
return c.Target.CodeModel
}
return "default"
}
// RelocationModel returns the relocation model in use on this platform. Valid
// values are "static", "pic", "dynamicnopic".
func (c *Config) RelocationModel() string {
if c.Target.RelocationModel != "" {
return c.Target.RelocationModel
}
return "static"
}
// EmulatorName is a shorthand to get the command for this emulator, something
// like qemu-system-arm or simavr.
func (c *Config) EmulatorName() string {
parts := strings.SplitN(c.Target.Emulator, " ", 2)
if len(parts) > 1 {
return parts[0]
}
return ""
}
// EmulatorFormat returns the binary format for the emulator and the associated
// file extension. An empty string means to pass directly whatever the linker
// produces directly without conversion (usually ELF format).
func (c *Config) EmulatorFormat() (format, fileExt string) {
switch {
case strings.Contains(c.Target.Emulator, "{img}"):
return "img", ".img"
default:
return "", ""
}
}
// Emulator returns a ready-to-run command to run the given binary in an
// emulator. Give it the format (returned by EmulatorFormat()) and the path to
// the compiled binary.
func (c *Config) Emulator(format, binary string) ([]string, error) {
parts, err := shlex.Split(c.Target.Emulator)
if err != nil {
return nil, fmt.Errorf("could not parse emulator command: %w", err)
}
var emulator []string
for _, s := range parts {
s = strings.ReplaceAll(s, "{root}", goenv.Get("TINYGOROOT"))
Allows the emulator to expand {tmpDir} This allows you to expand {tmpDir} in the json &#34;emulator&#34; field, and uses it in wasmtime instead of custom TMPDIR mapping logic. Before, we had custom logic for wasmtime to create a separate tmpDir when running go tests. This overwrite the TMPDIR variable when running, after making a mount point. A simpler way to accomplish the end goal of writing temp files is to use wasmtime&#39;s map-dir instead. When code is compiled to wasm with the wasi target, tempDir is always /tmp, so we don&#39;t need to add variables (since we know what it is). Further, the test code is the same between normal go and run through wasmtime. So, we don&#39;t need to make a separate temp dir first, and avoiding that reduces logic, as well makes it easier to swap out the emulator (for wazero which has no depedencies). To map the correct directory, this introduces a {tmpDir} token whose value is the host-specific value taken from `os.TempDir()`. The motivation I have for this isn&#39;t so much to clean up the wasmtime code, but allow wazero to execute the same tests. After this change, the only thing needed to pass tests is to change the emulator, due to differences in how wazero deals with relative lookups (they aren&#39;t restricted by default, so there&#39;s not a huge amount of custom logic needed). In other words, installing wazero from main, `make tinygo-test-wasi` works with no other changes except this PR and patching `targets/wasi.json`. ```json &#34;emulator&#34;: &#34;wazero run -mount=.:/ -mount={tmpDir}:/tmp {}&#34;, ``` On that note, if there&#39;s a way to override the emulator via arg or env, this would be even better, but in any case patching json is fine. Signed-off-by: Adrian Cole &lt;adrian@tetrate.io&gt;
2 years ago
// Allow replacement of what's usually /tmp except notably Windows.
s = strings.ReplaceAll(s, "{tmpDir}", os.TempDir())
s = strings.ReplaceAll(s, "{"+format+"}", binary)
emulator = append(emulator, s)
}
return emulator, nil
}
type TestConfig struct {
CompileTestBinary bool
CompileOnly bool
Verbose bool
Short bool
RunRegexp string
SkipRegexp string
Count *int
BenchRegexp string
BenchTime string
BenchMem bool
Shuffle string
}